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the international intellectual landscape. For ex-
ample, Figure 1 shows some results from a biblio-
metric study that my colleagues and I conducted 
at the University of Arizona’s AI Lab.1 The study 
was based on academic nanotechnology papers 
published in the Thomson Science Citation In-
dex’s (SCI) Web of Sciences database from 1976 
to 2004.2 Prior to 1991, the US, Japan, Germany, 
France, and the UK were the major countries pub-
lishing nanotechnology research. After 1991, sev-
eral additional countries joined them. By 2003, 
China was the second most productive country. 
South Korea also showed rapid development after 
2000. In four years, its output exceeded Italy, Rus-
sia, and England to become the sixth most produc-
tive country in 2004.2

S&T strength is the foundation of a nation’s 
economic power, so an effective, automated means 
of continually assessing this strength is critical 
to understanding a country’s economic status. 
Such assessments require investigations in several 
dimensions:

Participants. Who are the scientists and devel-
opers involved in R&D, and which institutions 
and companies ultimately benefi t from these 
activities?
Processes. What are the funding models/pro-
grams, and how are the participants linked 
together and organized around research 
initiatives? 

Output. What ideas, inventions, and innova-
tions result, in which areas of technology and 
with what quality?
Benefi ts. What are the economic and military 
advantages obtained from participation in and 
outputs from technology development?
Barriers. Do any cultural or political factors 
hinder the effectiveness of a country’s R&D in 
its quest to become a power in the global econ-
omy? (For a discussion of recent US regulations 
and their potential to restrict global S&T, see 
the “Regulatory Restrictions on Global S&T” 
sidebar on p. 70.)

Global S&T analytics addresses many such ques-
tions. AI, knowledge mapping, and content-
analysis research contribute signifi cantly to the 
answers.

In addition to analytics, global S&T assessment 
requires advances in several data collection and 
computational research areas, such as multilingual 
query and translation support, multimedia and 
unstructured data collection and management, 
and content analysis and visualization. These ar-
eas also benefi t from AI, knowledge mapping, and 
content-analysis research.

For instance, Nano Mapper (http://nanomapper.
eller.arizona.edu) is a knowledge mapping system 
that integrates the analysis of nanotechnology pat-
ents and grants into a Web-based platform. The 
Nano Mapper system contains nanotechnology-
related patents from the US, European, and Jap-
anese patent offi ces as well as information from 
the US National Science Foundation (NSF) grant 
documents. It provides simple search functional-
ities and a set of analysis and visualization tools 
that users can apply to different analytical units 
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over different time periods. For ex-
ample, Figure 2 shows a visualization 
for US Patent and Trade Organization 
(USPTO) patent citations from differ-
ent countries and institutions over a 
30-year period.

In this Issue
This issue includes five essays on global 
S&T assessment from distinguished 
experts in knowledge mapping, sci-
entometrics, information visualiza-
tion, digital libraries, and multilingual 
knowledge management. Each essay 
presents an innovative research frame-
work, computational methods, and se-
lected results and examples. 

In the first essay, “China S&T As-
sessment,” Ronald N. Kostoff pro-
poses three fundamental S&T assess-
ment metrics. “Right job” addresses 
the overall investment strategy. “Job 
right” addresses the S&T approach. 
“Productivity/progress” addresses the 

S&T output and impact. Using scien-
tometrics techniques, Kostoff shows 
the strong Chinese emphasis on the 
physical and engineering sciences and 
its significant research productivity 
gains over the past two decades. 

In “Mapping the Sloan Digital Sky 
Survey’s Global Impact,” Chaomei 
Chen, Jian Zhang, and Michael S. 
Vogeley adopt scientometrics and vi-
sualization techniques to study the 
publication and usage patterns of 
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Figure 1. Top 10 countries and regions publishing nanotechnology papers (1976–
2004). Although the US still publishes the most papers on this topic, the rapid 
growth of China’s contributions after 1991 moved it to second place by 2003.
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researchers in the Sloan Digital Sky 
Survey (SDSS) astronomy commu-
nity. In addition to identifying S&T 
assessment challenges, the authors 
demonstrate the integral roles com-
putational algorithms and advanced 
visualizations can play in science pol-
icy making and monitoring, in track-
ing the diffusion of knowledge, and 
in matching expertise and resources 
with local and global needs. 

In the third essay, “Open Data and 
Open Code for S&T Assessment,” 
Katy Börner, Nianli Ma, Russell J. 

Duhon, and Angela M. Zoss intro-
duce “science maps” to help humans 
mentally organize, access, and man-
age complex digital library collections. 
The maps are based on the authors’ 
Scholarly Database project at Indiana 
University. Their essay shows how 
S&T studies can benefit from selected 
free data from the NSF, National In-
stitutes of Health, and USPTO, to-
gether with free code—namely, the 
Network Workbench tool.

In “Global S&T Assessment by 
Analysis of Large ETD Collections,” 

Venkat Srinivasan and Edward A. Fox 
introduce the highly successful Net-
worked Digital Library of Theses and 
Dissertations (NDLTD) project. As of 
March 2009, NDLTD has 663,515 
electronic theses and dissertations 
(ETDs) from universities around the 
world. Using the NDLDT’s Union 
Catalog metadata in a training set 
and a naïve Bayes classifier, the au-
thors demonstrated a semiautomatic 
approach to topic categorization. The 
research can help identify emerging 
topics in relevant S&T collections.

With the increasing emphasis on science and technol-
ogy development by different countries and the com-

petitive landscape of innovation and commercialization, S&T 
protectionism can also become a potential barrier for global 
knowledge diffusion. Protectionism is nothing new in mod-
ern economies. It’s often administrated by different coun-
tries for strategically and socially important areas, ranging 
from farm products and the fishing industry, to advanced in-
formation technology and military systems. However, we’ve 
witnessed increasingly strict enforcement of regulations that 
control the transfer of equipment, technology, and know-
how to foreign countries and nationals. Although this prob-
lem might be much more alarming on US university cam-
puses lately, it wouldn’t be surprising to see other countries 
adopt similar protective measures.

In the US, the two primary statues covering exports are 
the Arms Export Control Act and the Export Administration 
Act. These acts authorize two sets of regulations, the Inter-
national Traffic in Arms Regulations (ITAR) and the Export 
Administration Regulations (EAR). ITAR covers items that are 
inherently military in nature. The Department of State ad-
ministers these regulations, which include the Munitions List, 
delineating controlled types of items and technologies. EAR 
covers “dual-use items,” which can be used for either mili-
tary or civil purposes. The Department of Commerce admin-
isters these regulations, which include the Commerce Control 
List. The EAR defines a “deemed export” as the release to a 
foreign national of technology or source code subject to the 
EAR. These situations might include laboratory tours, joint 
research conducted with foreign students or professors, and 
even email, visual inspections, and oral exchanges. 

The US regulations particularly target foreign nationals 
from countries such as Iran and Cuba. Research conducted 
by faculty and students at a university is normally considered 
fundamental research and is excluded from ITAR and EAR 
regulations. However, university-based research isn’t consid-
ered fundamental research if the university or its researchers 
accept restrictions on the publication of the project results—
for example, proprietary restrictions or a requirement for 
sponsor approval prior to publication. 

Recently many research universities have become vigilant 

in informing faculty and students about these export regu-
lations and in enforcing due process,1 especially for defense 
or security-related research projects from US federal agen-
cies. Universities frequently suggest that relevant projects 
develop a technology control plan to outline the procedures 
needed to secure controlled technology from use and obser-
vation by unlicensed non-US citizens. For more information 
about export control regulations and processes, many uni-
versities have begun to provide useful resources—for exam-
ple, the University of Maryland (www.umresearch.umd.edu/
ORAA/ecg/index.html).

Why are such measures of relevance to IEEE Intelligent Sys-
tems readers? What is the cost of noncompliance? 

ITAR violation can result in up to $1 million per violation 
and 10 years of imprisonment. Professor Reece Roth in the 
University of Tennessee’s Department of Electrical and Com-
puter Engineering was convicted in September 2008 and 
faces up to 160 years in jail and $1.5 million in fines for dis-
closing restricted US military data about unmanned aerial 
vehicles to foreign nationals without first obtaining the re-
quired US government license or approval.1 EAR violation can 
result in fines of $50,000 or five times the value of export, 
whichever is greater, per violation, and 10 years of imprison-
ment. Professor Thomas Butler of the Texas Tech University 
faces 2 years in prison for making fraudulent claims and un-
authorized export (plague bacteria). 

Although these might be isolated incidents, research-
ers in academic institutions must become more knowledge-
able about such developments and watchful in future inter-
national collaborations. University boards and government 
agencies need to debate and evaluate the impacts of such 
measures in light of the unstoppable force of global S&T de-
velopment, diffusion, cross-fertilization, and competition.

Reference
 1. R. Monastersky, “Professor’s Conviction on Export Violations  

Alerts U.S. Universities,” Chronicle of Higher Education, 8 Sept. 
2008; http://researchintegrity.asu.edu/security/documents/ 
Export_Violations_Article-Chronicle9-8-08.pdf.
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The fifth and final essay, “Manag-
ing Multilingual S&T Knowledge” by 
Christopher C. Yang and Chih-Ping 
Wei, describes a research framework 
for cross-lingual and polylingual text 
categorization and category integra-
tion. They illustrate the significance 
of cross-lingual document retrieval 
and management for global S&T as-
sessment and identify rich future re-
search directions.

Global S&T opens the door to 
global cooperation as well as com-
petition. Again, I use China as an 
example. Chinese researchers have 
published a wealth of information 
about S&T developments beyond 
nanotechnology. Except for publica-
tions in major English journals and 
conference proceedings, much of this 
material is difficult for scholars out-
side China to locate or access, and 
most of it is unknown outside a small 
circle of researchers. One of the most 
comprehensive Chinese academic da-
tabases, the Wanfang Data, contains 
13,971,265 articles from 6,065 jour-
nals, 918,915 conference articles, 
and 1,184,412 dissertations (as of 7 
July 2008), all of them in Chinese. 

The breadth and depth of such 
material in China and other emerg-
ing economies offers insight into  
everything from industry and agri-
culture, to technology development 
and scientific research, to politics 
and military issues. Exploring these 
information resources can help ad-
vance economies throughout our 
evolving world.
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China S&T  
Assessment

Ronald N. Kostoff, Mitre Corp.

Science and technology (S&T) assess-
ment at the nation-state level is im-
portant from many perspectives. It 
can provide some understanding of 
a nation’s military potential, which 
is useful for defense planning. It can 
also provide understanding of a na-
tion’s commercial potential, which is 
useful for competitiveness. Finally, it 
can identify areas of S&T that can be 
leveraged and coordinated for mutual 
benefit.

What are the central principles in 
conducting an S&T assessment? In 
my Handbook of Research Impact 
Assessment,1 I identify three foun-
dational S&T assessment metrics, 
whether for a project, a program, or a 
nation’s total S&T output. I summa-
rize these as right job, job right, and 
productivity/progress. “Right job” ad-

dresses the overall investment strat-
egy: Are the larger S&T objectives be-
ing addressed correctly? “Job right” 
addresses the S&T approach: Are the 
best techniques being used to conduct 
the S&T? “Productivity/progress” ad-
dresses the S&T output and impact.

In this brief essay, I provide exam-
ples of how to use these metrics to 
assess the S&T of a rapidly growing 
country—namely, the People’s Re-
public of China. To place the assess-
ment in context, I compare China’s 
metrics with those of the leader in 
S&T output—namely, the US. I could 
have used countries such as India for 
the baseline,2 but my goal here is to 
show how far China must go to be-
come the leader in S&T output met-
rics. Much more detailed exposition 
of the use of these metrics in assess-
ing China’s S&T output are available 
elsewhere.2–5

Right Job
S&T strategy, as reflected in pub-
lished technical output in the global 
literature, can be inferred from dif-
ferent perspectives. Clustering docu-
ments by technical discipline provides 
one categorization approach,4 and it’s 
perhaps the main approach used. 

A complementary approach is to 
show relative areas of technical em-
phasis among multiple countries. 
In 2007, my colleagues and I down-
loaded equal numbers of US and 
China research articles from basic 
and applied research databases and 
compared the occurrence frequen-
cies of phrases.2,4 Table 1 reflects 
a conceptually similar approach to 
compare research discipline empha-
ses in the US and China. The Sci-
ence Citation Index (SCI), the pre-
mier database of research journals, 
includes a subject category field for 
each record—that is, for each ar-
ticle published. This field indicates 
the main technical discipline for the 
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journal in which the article was pub-
lished. For this essay, I examined the 
subject category distribution for the 
100,000 most recent articles (ending 
31 December 2008) published in the 
SCI from China and the US. I down-
loaded the subject categories and 
their frequencies. For each of almost 
500 categories, I computed the ratio 
of China’s frequency to that of the 

US, then sorted the list according to 
the China/US ratio.

The first 15 categories in Table 1 
represent strong technical area em-
phasis by China relative to the US, 
and the last 15 categories are the re-
verse. These results, which I’ve rep-
licated by other means and for other 
databases,2–5 show China’s strong 
relative emphases in the physical and 

engineering sciences and the US em-
phases in the biomedical, social, and 
psychological sciences. If we couple 
these results with China’s strong pro-
duction of technical graduates, then 
China’s investment strategy is provid-
ing a solid technology-based founda-
tion for future military and commer-
cial competitiveness.

Job Right
The second metric addresses research 
quality. The only universally ac-
cepted indicator of publication qual-
ity is a panel of experts reviewing a 
specific document. One commonly 
used proxy metric for quality is the 
number of times other research ar-
ticles cite an article. My colleagues 
and I examined the citation trend of 
China’s published articles in nano-
technology, an area of strong empha-
sis in Chinese research.5 The citation 
quality (percent of publications in the 
top citation tier) was low relative to 
that of the US, but it grew monotoni-
cally within a five-year period—from 
4 percent of the US figure in 1998 to 
20 percent in 2003, the latest period 
examined.

Another approach to assessing 
relative quality is to examine pub-
lication trajectories in high-quality 
journals. For these journals, arti-
cles must exceed a quality threshold 
to be accepted. I had three criteria 
for selecting journals to include in 
this assessment: high total citations, 
high citations per paper, and focus 
on specific physical science disci-
plines. Figure 3 compares the ratios 
of the number of Chinese to US ar-
ticles published in two important SCI 
journals—namely, the Journal of the 
American Chemical Society (JACS) 
and the Journal of Applied Physics 
(JAP). The figure includes a compari-
son to total China/US article produc-
tion in the SCI.

Over the past decade, the China/

Table 1. Ratio of China/US articles with subject categories specified.

Subject category China/US ratio

Crystallography 18.55

Metallurgy and metallurgical engineering 15.91

Materials science, textiles 6.21

Materials science, ceramics 6.02

Chemistry, inorganic and nuclear 5.66

Polymer science 5.62

Materials science, composites 5.55

Chemistry, applied 5.11

Physics, multidisciplinary 5.06

Electrochemistry 4.84

Mathematics, applied 4.67

Materials science, multidisciplinary 4.65

Chemistry, physical 4.23

Energy and fuels 4.21

Engineering, chemical 4.18

Sociology 0.06

Psychology, multidisciplinary 0.05

Women’s studies 0.04

Law 0.04

Psychology, mathematical 0.04

Political science 0.04

Humanities, multidisciplinary 0.04

Psychology, biological 0.04

Ethnic studies 0.04

Medical ethics 0.03

History and philosophy of science 0.03

History of social sciences 0.02

Religion 0.02

Philosophy 0.02

History 0.01

Psychology, psychoanalysis 0.01
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US ratio for total SCI nanotechnol-
ogy articles grew by about a factor of 
eight; the ratio for JACS articles grew 
by an order of magnitude, and the ra-
tio for JAP articles grew by more than 
a factor of five. These quality findings 
reflect results from earlier studies.3–5 
However, those studies also showed 
many Chinese articles being pub-
lished in low-impact-factor journals. 
From this newest study, we can con-
clude that a small high-quality com-
ponent is achieving rates of increase 
that match the overall growth in Chi-
nese technical literature.

Productivity/Progress
By any measure, China’s productivity 
in published technical papers over the 
past two decades has been astound-
ing. The bottom curve in Figure 4, 
reproduced from the middle curve in 
Figure 3 , shows outstanding relative 
total publication growth. The abso-
lute publication growth numbers are  
equally impressive. However, I be-
lieve aggregate statistics have limited 
value for operational decision mak-
ing. For bibliometrics, we must iden-
tify specific investment spikes to infer 
the true importance of an investment 
strategy. Table 1 addressed this issue 
to some extent.

Figure 4 provides an example of 
what we can derive from different 
levels of aggregation. The bottom 
curve, showing the overall China/
US publication ratio, indicates that 
China lags the US in total SCI pub-
lications by a factor of three. The 
middle curve (ratio of overall nano-
technology publications) shows rela-
tive growth similar to the overall rel-
ative growth pattern, albeit starting 
at a higher relative level due to Chi-
na’s emphasis on nanotechnology. By 
this metric, China has essentially ob-
tained parity with the US in overall 
nanotechnology publication produc-
tion. The top curve, for the important 

nanotechnology subarea of nanocom-
posites, shows a substantially higher 
(and linear) rate of ratio increase rela-
tive to the other two curves. By this 

metric, China is 60 percent ahead 
of the US in nanocomposite publica-
tion production. At this level of de-
tail, the analyst can examine specific  
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Figure 3. Ratio of China/US articles in flagship journals. The middle curve is the 
ratio of China/US articles for all journals. The upper curve is the China/US ratio for 
the Journal of Applied Physics (JAP), a leading physics journal, and the lower curve 
is the ratio of China/US articles for the Journal of the American Chemical Society 
(JACS), a leading chemistry journal.
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Figure 4. Ratio of China/US articles in nanotechnology at different aggregation 
levels. The bottom curve is the China/US ratio for all Scientific Citation Index (SCI) 
publications; the middle curve is the ratio for all SCI nanotechnology publications, 
and the upper curve is the ratio for all SCI nanocomposite publications. 
Nanocomposites are a subset of nanotechnology.
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investment spikes, such as nanocom-
posites, and start to connect the dots 
to identify the investment strategy 
priorities on an integrated basis.

S&T assessment at the project, 
program, or nation level can be very 
valuable. However, the analyst must 
be judicious in selecting the appropri-
ate metrics to evaluate the investment 
strategy, research approach, and pro-
ductivity, and the appropriate level of 
aggregation.
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Mapping the Sloan 
Digital Sky Survey’s 
Global Impact

Chaomei Chen, Jian Zhang,  
and Michael S. Vogeley,  
Drexel University

A country’s scientific capacity is es-
sential in today’s increasingly global-
ized science and technology (S&T) 
ecosystem. Scientific capacity has 
four increasingly advanced capability 
levels: absorbing, applying, creating, 
and retaining scientific knowledge.1 
Moving up these levels requires more 
skill and training. For example, ap-
plying scientific knowledge requires 
more specialized skills than absorb-
ing it. Similarly, making new discov-
eries requires more knowledge than 
applying existing procedures.

Research has shown the importance 
of addressing specific, local problems 
while tapping into globally available 
expertise and resources. Accessing 
scientific knowledge is the first step 
toward absorbing knowledge. Low-
income countries have increased their 
access to scientific literature on the 
Internet,2 but to what extent has this 
access led to more advanced scientific 
capacity? 

Interdisciplinary and international 
collaboration might hold the key to 
creating and retaining knowledge.3,4 
For example, creative ideas tend to 

be associated with inspirations origi-
nating from diverse perspectives.3 On 
the other hand, not all collaborations 
are productive. Assessing global S&T 
must therefore consider both suc-
cesses and failures and the reasons 
behind them. 

Sloan Digital Sky Survey
Researchers have addressed science 
policy issues by investigating the 
connection between the growth of a 
country’s scientific publications and 
its economic capacity.5 We focus on 
international collaborations associ-
ated with astronomy’s Sloan Digital 
Sky Survey (SDSS; www.sdss.org) 
to illustrate some fundamental chal-
lenges for assessing global S&T in a 
rapidly growing and globalized re-
search field.

The SDSS is the largest digital 
sky survey. It collects multiple types 
of data about stars, galaxies, qua-
sars, and other astronomical objects 
in the universe. The survey has been 
funded by the Alfred P. Sloan Foun-
dation, along with the participat-
ing institutions, the National Science 
Foundation, the US Department of 
Energy, NASA, the Japanese Mon-
bukagakusho, the Max Planck Soci-
ety, and the Higher Education Fund-
ing Council for England. The SDSS 
releases the survey data to the public 
through the SDSS SkyServer website. 
Researchers and the general public 
can access the data directly on the In-
ternet. SDSS I operated between 2000 
and 2005. SDSS II operated between 
2005 and 2008. SDSS III is operating 
currently.

Our analysis focuses on two data 
sources: the SkyServer’s SQL query 
log and the bibliographic records of 
SDSS publications retrieved from 
the Web of Science (http://isi.knowl-
edge.com). The query analysis aims 
to identify query patterns and areas 
of particular interest in the sky. We 
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use bibliometric analysis, text min-
ing, and network visualization tech-
niques to assess a country’s capability 
of absorbing and applying knowledge 
in terms of growth in its scientific 
work force. We also want to reveal 
collaborating countries and collabo-
ration topics and to investigate broad 
trends of data access, publishing, and 
impacts.

Rapidly Growing 
Scientific Capacity
Absorbing knowledge is easier than 
creating it: more countries access 
the SDSS data than contribute to the 
SDSS literature. 

In general, we expect that the more 
data a country accesses, the more it 
publishes (see Figure 5). Determin-
ing the dynamics linking data access 
and publication is difficult. Reliably 
tracing data sources in unstructured 
or semistructured texts such as sci-
entific papers remains a technical  
challenge for relevant fields such as 
natural language processing and on-
tology construction.

We retrieved 2,137 bibliographic 
records of SDSS publications be-
tween 1994 and 2008 from the Web 
of Science. Table 2 summarizes the 
statistics for these publications. We 
divided the last 15 years into three 
5-year periods: 1994–1998, 1999–
2003, and 2004–2008. Large in-
creases are found at the country, in-
stitutional, and individual levels. 
Citations exceeding 300,000 in the 
periods 1994–1998 and 1999–2003 
clearly indicate that SDSS’s impact 
has reached far beyond the boundary 
of the international SDSS commu-
nity. For example, the SDSS consor-
tium from 2004–2008 has 25 partici-
pating countries. In contrast, authors 
who published in this period came 
from 51 countries. 

Figure 6 depicts the dynamics of 
global SDSS research according to 

the growth rate of data access, pub-
lications, and citations received by 
each country. The acceleration of a 
given country’s data access measures 
the growth rate from the half-life 
point of the accumulative data re-
quests to the end of 2008—that is,

a
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Figure 5. Geographic distributions of SQL queries received by the SDSS SkyServer 
between 2003 and 2008. Many countries access the SDSS data despite considerable 
differences in their scientific capacity. (Source: http://manyeyes.alphaworks.ibm.
com/manyeyes/visualizations/world-map-of-sdss-query-and-publicat, used by 
permission.)

Table 2. Statistics about SDSS publications over three 5-year periods.

Unique Items 1994–1998 1999–2003 2004–2008 Total

Countries 11 37 51 52

Institutions 54 529 2,352 2,619

Authors 135 1,103 3,879 4,372

Articles 47 369 1,722 2,137

Keywords 308 4,052 21,271 25,631

Phrases 1,019 9,838 46,801 57,658

References 955 8,265 31,647 35,999

Citations 15,828 388,638 329,008 733,474
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are the half-life and the total lifetime 
in months.

We compute the acceleration of a 
country’s publications similarly. Fig-
ure 6 charts both acceleration rates 
logarithmically for clarity. The bub-
ble sizes represent the citations re-
ceived by the country. Chile ap-

pears as an outlier with much faster 
growth in publication than in data 
access. This observation invites fur-
ther investigations into Chile’s as-
tronomical research infrastructure, 
its researchers’ expertise, and its 
policies for international scientific 
collaboration.

In contrast, Italy appears as a dif-
ferent kind of outlier, with faster data 
access but a relatively slower publi-
cation rate. Such observations might 
direct global S&T assessment to fo-
cus on the role of local resources and 
how collaborating countries tap into 
shared resources and expertise.

An essential component of a coun-
try’s sustainable S&T development is 
its population of active researchers. 
Growth in its scientific workforce di-
rectly reflects a country’s potential. 
The US and Japan were the original 
SDSS participating countries. Ger-
many joined in 1999. Since 2006, ad-
ditional countries have participated 
in SDSS II, including the UK, Swit-
zerland, and South Korea. Except in 
Japan, the research work forces in 
participating countries grew much 
faster than average (see Figure 7). 
The number of publishing authors in 
South Korea increased from 7 to 498 
during the first two 5-year periods—
that is, 1994–1998 and 1998–2003.

On the other hand, the workforces 
of a few nonparticipating countries 
grew remarkably as well. For exam-
ple, a sharp increase in the number 
of active authors in Australia might 
be due in part to earlier sky surveys 
conducted by Australian astrono-
mers, such as the two-degree field 
Galaxy Redshift Survey (2dF), which 
is often cited in the SDSS literature.

Global Impact
Capturing the big picture of interna-
tional collaboration at a macroscopic 
level and simultaneously linking to 
subject matters at finer granularities 
is a long-standing challenge for com-
putational methods. 

Figure 8 illustrates how computa-
tional approaches can help improve 
our understanding across macro- and 
microscopic levels. The visualization 
represents two layers of information 
and is generated using the latest ver-
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sion of CiteSpace, a freely available 
Java application for analyzing and 
visualizing scientific literature.6 The 
base layer is a network of collaborat-
ing countries between 1994 and 2008. 
If researchers from different countries 
coauthored a published SDSS paper, 
the visualization connects those home 
countries. The thematic layer aggre-
gates individual countries into clus-
ters such that countries in the same 
cluster have tighter collaboration ties 
than those in different clusters. Each 
cluster reflects SDSS publications col-
laboratively written by researchers 
from these countries. 

Researchers can choose cluster la-
bels algorithmically at different ab-
straction levels, from the publication 
titles, their indexing terms, or noun 
phrases extracted from their abstracts. 
We used td*idf (term frequency × in-
verse document frequency) weighting 
to select the cluster labels in Figure 
8 from indexing terms of the collab-
orative publications. In cluster 6, the 
predominant topic for collaborating 
researchers from Germany, England, 
Italy, and France is “halo,” whereas 
in cluster 5, the primary focus of col-
laborations between Brazil and Ar-
gentina is likely “dark energy.” Show-
ing patterns at this level is useful not 
only for researchers in the trenches 
but also for science policy makers 
and evaluators.

In summary, we’ve identified some 
of the challenges for assessing glo-
balized S&T development and dem-
onstrated some computational algo-
rithms that can play integral roles in 
science policy making and monitor-
ing. These approaches can also help 
in tracking how knowledge diffuses 
from large-scale, data-driven, cy-
ber-enabled scientific activities and 
in matching complementary exper-

tise and resources between local and 
global needs.
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Open Data  
and Open Code  
for S&T Assessment

Katy Börner, Nianli Ma,   
Russell J. Duhon,  
and Angela M. Zoss,
Indiana University

There are more active science and 
technology (S&T) researchers to-
day than ever before, and they either 
publish or perish. Some S&T areas 
produce more than 40,000 papers 
a month. Not only library buildings 
and storage facilities but also data-
bases are filling up more quickly than 
we can build them. In addition, there 
are data sets, algorithms, and tools to 
be mastered for S&T to advance. No 
single person, machine, or institution 
can process and make sense of this 
enormous stream of data, informa-
tion, knowledge, and expertise.

The tools we use to access, manage, 
and utilize our collective knowledge 
are primitive. Search engines are our 
main means of accessing everything 
we know collectively. This seems to 
work well for fact-finding, but it keeps 
us on the floor of confirmed and un-
confirmed records. There is no “zoom 
out” button that provides a global 
view of our collectively knowledge—
how it’s interlinked; what patterns, 
trends, or outliers exist; or the context 
in which a specific piece of knowledge 
was created or can be used. Without 
context, intelligent data selection, 
prioritization, and quality judgments 
become extremely difficult to make. 
This reality leads to increasing spe-
cialization of researchers, practitio-
ners, and other knowledge workers, 
a disconcerting fragmentation of sci-
ence, and a world of missed opportu-
nities for collaboration. 

Recent advances in the digitization, 
federation, mining, and mapping of 
data make it possible to chart the 

structure and dynamics of science.1–3 
The resulting science maps serve to-
day’s explorers navigating scholarly 
networks and S&T results. The maps 
are generated through analysis of 
large-scale scholarly data sets in an 
effort to connect and make sense of 
bits and pieces of knowledge. Maps 
identify major research areas, experts, 
institutions, collections, grants, pa-
pers, journals, and ideas in domains 
of interest. They provide overviews of 
specific S&T fields—their homogene-
ity, import-export factors, and rela-
tive speed of innovation. They let us 
track the emergence, evolution, and 
disappearance of topics and identify 
the most promising areas of research.

Currently, many of the data sets 
and tools used to generate maps of 
science are proprietary and particu-
lar to each analyst. There are few, if 
any, standardized tools that can ac-
cess and process appropriate data and 
present the results in a way that en-
ables decision making by nonexperts. 
In this essay, we present open data 
and open code that can be freely used 
for S&T assessment together with 
sample analyses.

Linking Open Data
The Scholarly Database (SDB; http://
sdb.slis.indiana.edu) at Indiana Uni-
versity evolved from seven years of de-
velopment toward a free data source 
for S&T studies.4 SDB offers three 
critical advantages for these studies: 

Search queries for an author, inves-
tigator, or inventor name or topic 
term can be run against multiple 
databases offering simultaneous re-
trieval of all funding, publications, 
and patents relevant for a query.
Search results can be downloaded 
as complete record data dumps in 
an easy-to-process format.
As query results are processed, de-
rivative data sets such as coauthor 

or patent-citation tables can be 
downloaded as well.

Currently, SDB provides access to 
four data sets: 

17,764,826 Medline papers pro-
vided by the National Library of 
Medicine (NLM), 
1,043,804 funding awards from 
the National Institutes of Health 
(NIH),
174,835 funding awards from 
the National Science Foundation 
(NSF), and 
3,875,694 patents from the US 
Patent and Trademark Office 
(USPTO).

Information regarding data prov-
enance, system architecture, table 
schemas, and search functionality is 
available on SDB’s “About” page. 

Any researcher or layperson can 
register to search approximately 23 
million records. Currently, the sys-
tem has over 150 registered users 
from four continents and over 60 in-
stitutions in academia, industry, and 
government.

Sharing Free Code
The Network Workbench (NWB, 
http://nwb.slis.indiana.edu) is a tool 
that supports researchers, educators, 
and practitioners interested in the 
study of biomedical, social and be-
havioral science, physics, and other 
networks. As of June 2009, the tool 
contains more than 110 plug-ins for 
the preprocessing, analysis, model-
ing, and visualization of networks. 
About 40 of the plug-ins can be ap-
plied to or were specifically designed 
for S&T studies. 

The NWB tool comes with an asso-
ciated community wiki (https://nwb.
slis.indiana.edu/community), exten-
sive documentation of algorithms, 
and sample data sets. The tool has 
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been downloaded more than 22,000 
times since December 2006.

S&T Studies That  
Anyone Can Replicate
Users can combine the SDB with the 
NWB tool to study S&T data sets 
professionally in a manner that any-
one can easily replicate. The process 
involves three steps: data set retrieval 
and download using SDB, data anal-
ysis and visualization using the NWB 
tool, and interpretation of results.

Data Acquisition
Figure 9a shows a query for “artifi-
cial intelligence” in the “All Text” 
field over all data sets available in 
SDB. The browse results page com-
prises 13,445 records—10,449 Med-
line papers, 2,103 NIH awards, 614 
NSF awards, and 279 USPTO pat-
ents. The top-five highest scoring re-

cords are five Medline papers (see 
Figure 9b). Clicking on the record ti-
tle opens a page showing the abstract 
and other information associated 
with the record.

Users can select different data types 
from the download results (see Figure 
9c). For example, the Medline data-
base offers a master table with gen-
eral information, an author table that 
provides paper-author associations, 
a coauthor table that stores the co-
author network in a format compat-
ible with the NWB tool, as well as 
several other tables. The icons next 
to each table link to data dictionar-
ies for each database and sample data 
sets as well.

Medline Coauthorship Network
The Medline master table lists all pa-
per records for the AI query. The five 
most frequently occurring journals are 

IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence with 
761 papers, IEEE Transactions on 
Image Processing (526), Bioinformat-
ics (469), IEEE Transactions on Sys-
tems, Man, and Cybernetics – Part B,  
Cybernetics (456), and Springer’s Pro-
ceedings of the International Confer-
ence on Medical Image Computing 
and Computer-Assisted Intervention 
(443). 

A user can load the Medline coau-
thor table into the NWB tool. The 
table then appears in the tool’s Data 
Manager window (see Figure 10a).5 
With plug-ins specific to scientomet-
rics research, NWB can be used to 
extract the coauthorship network. A 
network-analysis toolkit computes 
basic properties. The network has 
26,206 author nodes and 59,140 co-
author edges. Exactly 944 authors are 
isolates (that is, unconnected). The 

Figure 9. SDB interfaces for (a) search, (b) browsing results, and (c) downloading results. These interfaces guide users through 
the search of multiple data sets and the download of results in different combinations and formats. (Screen shots courtesy of 
the Cyberinfrastructure for Network Science Center, Indiana University, Bloomington.)
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number of clusters is almost 5,000. 
Using the weak component cluster-
ing algorithm, the user can extract 
the largest component, which has 
4,165 nodes and 13,289 edges. Subse-
quently, a node-degree analysis com-
putes each node’s degree—that is, its 
number of distinct edges. 

For each node, the betweenness-
centrality (BC) algorithm determines 
the fraction of shortest paths between 
node pairs that pass through the node 
of interest. The Guess graph explo-
ration tool (http://sourceforge.net/ 
projects/guess), available under the 
NWB tool’s visualization menu, visu-
alizes the resulting network.

Figure 10b shows the coauthor 
network with author node area 
sizes and color-coding according to 

their degree—that is, the number of 
distinct coauthors. The five nodes 
with the highest BC value are la-
beled and appear in pink. The high-
est BC node is “Zhang, Li,” the au-
thor of 10 papers from the Medline 
AI search results. His papers have 
been published in journals with In-
stitute for Scientific Information 
subject categories varying from 
“computer science, hardware and 
architecture” to “endocrinology 
and metabolism.” This diversity is 
mirrored in his coauthorship con-
nections to researchers from many 
different clusters in the network. 
Medline contains little computer 
science research—primarily work 
within the biomedical sciences. 
Consequently, the network features 

major experts that apply AI tech-
niques to biomedical research and 
practice.

USPTO Patent Citation Network
The AI search results generate a 
USPTO citation network that has 
3,614 nodes, 8,393 edges, and 107 
components. NWB users can load 
the USPTO citation table and apply 
the scientometrics-specific extract- 
directed network algorithm to extract 
a patent-citation network. 

The network shows many network 
components connected by weak link-
ages. The 20 nodes with the highest 
outdegree—that is, the highest num-
ber of citations within the set—are 
labeled by patent number. Figure 10c 
shows a zoom into the set of most-

Figure 10. Interfaces to (a) the NWB tool with its console, which records the number of algorithms run, and its data manager, 
which lists loaded and computed data sets; (b) a Guess layout of the Medline coauthorship network’s largest component; and 
(c) a Guess zoom feature showing details of the patent-citation network. (Screen shots courtesy of the Cyberinfrastructure for 
Network Science Center, Indiana University, Bloomington.)
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cited patents. Among them are patent 
number 5597312, entitled “Intelligent 
tutoring method and system”; num-
ber 5372507, describing a “Machine-
aided tutorial method”; and num-
ber 5696885, an “Expert system and 
method employing hierarchical knowl-
edge base, and interactive multimedia/ 
hypermedia applications.”

The availability of open data and 
open code will make S&T assessment 
more available and potentially more 
powerful. Over time, more data sets 
will become available via the SDB. 
At the core of the NWB tool is the 
Cyberinfrastructure Shell (CIShell, 
http://cishell.org), which makes it 
easy to plug-and-play new algorithms 
and to bundle sets of algorithms into 
custom branded tools. CIShell builds 
on and extends industry-developed 
code by the OSGi Alliance (http://
osgi.org), reducing time-to-market 
and development costs by letting de-
velopers exploit many pre-built and 
pre-tested modules. 

Other work currently under way 
will make it possible to create high-
quality visualizations that support 
insight from raw data, at the push 
of a button, including geographic 
maps and hierarchical community 
visualizations.
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Global S&T Assessment 
by Analysis of Large 
ETD Collections
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Electronic theses and dissertations 
(ETDs) are a key part of global schol-
arship. If we can determine the dis-
tribution of ETDs in broad topical 
areas, such as science, technology, en-
gineering, and mathematics (STEM), 
for each region around the world, we 
can gain critical insights into prevail-
ing research trends. 

In this essay, we present a tech-
nique for identifying STEM disserta-
tions from a large ETD collection. We 
derived our testbed ETD collection 
from the Networked Digital Library 
of Theses and Dissertations (NDLTD; 
www.ndltd.org),1 which has mem-
bers from more than 80 universities 
(or university consortia) around the 
world (see Figure 11). Hence our re-
sults can be used to gauge global in-
terest in STEM areas, particularly 
since the mid-1990s. 

Background
ETDs form an important part of the 
open access scholarly literature but 
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are largely underutilized. Though 
there are many analyses of the schol-
arly literature—for example, studies 
of research trends, citation networks, 
or clickstream data—to the best of 
our knowledge, very few of the stud-
ies consider ETDs.

Yet ETDs are a valuable resource in 
and of themselves. They have broad 
topical coverage, include comprehen-
sive and up-to-date literature surveys 
with pointers to related papers, and, 
importantly, also have quality con-
trol, in that dissertations are reviewed 
by a committee of experts. Easier ac-
cess to ETDs would therefore be a 
valuable aid to scholarly activities. 

In a larger effort here at Virginia 
Tech, we’re working on developing 
techniques for performing informa-
tion retrieval in large documents, 
such as books, ETDs, and patent doc-
uments. As part of our preliminary 
studies, we’ve worked on categoriz-
ing ETDs into topical areas, and we’ll 
subsequently provide an appropriate 
search and browse interface. Here, 
we present results from a pilot study.

Our work’s implications go beyond 
just providing an approach to tag 
ETDs into STEM and non-STEM ar-
eas. In recent years, in the US in par-
ticular, concern has increased about 

declining interest in STEM areas 
among the student population. The 
problem is particularly accentuated 
at the undergraduate and graduate 
levels, where such a declining inter-
est could lead to reduced competitive-
ness in the global technology environ-
ment. Electronic dissertations can be 
very good indicators in this regard, as 
there is a direct correlation between 
the number of dissertations produced 
and the number of students graduat-
ing in the corresponding area. 

Study Methods
The NDLTD Union Catalog is an ef-
fort that started in the mid-1990s to 
aid the preparation and wider dis-
semination of ETDs. As of March 
2009, the catalog has 663,515 ETDs 
from universities around the world. 
It provides 15 Dublin Core metadata 
fields (see http://dublincore.org) rel-
evant to a dissertation (title, subject, 
abstract, year, publisher, and so on) 
plus a link to the dissertation itself at 
the corresponding university. While 
compiling the list of NTLTD for a 

particular region, we considered only 
those universities that contributed 
more than 2,000 dissertations for our 
experiments.

We also confined our pilot stud-
ies to English language dissertations. 
Many NDLTD-affiliated universities 
have dissertations in languages other 
than English—mostly in Portuguese, 
Spanish, or Chinese—so ETDs from 
the US are significantly overrepre-
sented in our sample. Another major 
issue with the NDLTD Union Cata-
log is the amount of noise present in 
various metadata fields. For example, 
although you might expect the “date” 
field to hold the year in which the dis-
sertation was published, it sometimes 
holds author or university informa-
tion or other unrelated data instead. 
Because our study includes a timeline 
analysis, we considered only those 
dissertations that have the Dublin 
Core “date” field set correctly. Fortu-
nately, this is the case for many uni-
versities, especially for those from the 
US and Australia.

Figure 12 describes our categoriza-
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Figure 11. Major regions contributing 
to the Networked Digital Library of 
Theses and Dissertations (NDLTD) Union 
Catalog. The NDLTD has members from 
more than 80 universities worldwide.

Figure 12. Categorization pipeline. Electronic thesis and dissertation (ETD) metadata  
is used as features to the naïve Bayes classifier, which then distinguishes the 
science, technology, engineering, and mathematics (STEM) ETDs from others.
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tion pipeline. We use only metadata 
information—specifically, only the 
Dublin Core title, subject, and ab-
stract metadata fields. The first step 
is to build a good-quality training set 
to use in training a classifier to dis-
tinguish between STEM dissertations 
and others. To do this, we filter the 
dissertations according to keywords 
occurring in the Dublin Core subject 
field. For science categories, we check 
for words such as biology, chemistry, 
or math. For the technology category, 
we check for the keyword “engineer-
ing” in the subject field.

We selected dissertations from three 
universities: Massachusetts Institute 
of Technology (MIT), California In-
stitute of Technology (Caltech), and 
Virginia Tech. We filtered these dis-
sertations on the basis of keywords. 
We then used 50 science and 50 tech-
nology dissertations (selected at ran-
dom) as a training set for STEM ar-
eas, and 100 “other” dissertations 
(identified manually) to form our 
non-STEM training set. 

We trained a naïve Bayes classi-
fier to distinguish between STEM 
and non-STEM dissertations. We 

chose this classifier for its simplicity, 
low training time, and effectiveness 
in performing binary classification.2 
We concatenated the Dublin Core 
title, subject, and description meta-
data fields and used them to train the 
classifier, after some parsing (to re-
move special characters, mathemati-
cal equations, and so on), stopword 
removal, and stemming. The features 
provided to the naïve Bayes classifier 
are thus the word stems occurring in 
the three metadata fields. We used 
an open source implementation of 
a naïve Bayes classifier in Perl avail-
able through the Comprehensive Perl 
Archive Network (see http://search.
cpan.org /~kwil l iams/Algorithm- 
NaiveBayes-0.04/ l ib/Algorithm/ 
NaiveBayes.pm).

Results
We determined the classifier’s aver-
age precision and recall values on the 
training set of 200 documents by per-
forming 10-fold cross-validation; the 
values are 0.94 and 0.70, respectively. 
We measure precision as the ratio of 
true STEM dissertations and the dis-
sertations identified as STEM by the 

classifier, and recall as the fraction of 
true STEM dissertations that the clas-
sifier identified correctly as STEM. 
We compute precision and recall val-
ues during each of the 10 folds, and 
average them to obtain the overall 
precision and recall measures.

We used the classifier to identify 
STEM dissertation for universities 
that have dissertations in English in 
NDLTD. Table 3 presents the ETD 
sources and detailed results. We also 
performed a timeline analysis on 
this ETD collection, where we mea-
sured the STEM output over time 
(see Figure 13). While the percentage 
of ETDs that are in STEM areas, as 
opposed to all topical areas, seems in 
most of the world to be relatively con-
stant, it appears that the US percent-
age is declining, which many would 
view as a matter of concern.

Our pilot study results indicate 
that information in the Dublin Core 
metadata fields is by itself sufficient 
to do the initial categorization into 
STEM and non-STEM areas. As part 

Table 3. Science, technology, engineering, and mathematics (STEM) dissertations  
for some major contributors to the NDLTD Union Catalog.

NDLTD Source (University) No. of ETDs in NDLTD No. of STEM EDTs identified by the classifier

USA Massachusetts Institute of Technology 29,804 23,157

Virginia Polytechnic Institute & State University 11,976 6,776

Ohiolink (Ohio universities) 8,020 5,467

North Carolina State University 5,026 4,179

California Institute of Technology 4,774 4,596

Georgia Institute of Technology 3,582 2,628

Total 63,182 46,803

Rest of the 
World

Australasian Digital Theses 37,958 15,121

NSYSU (Taiwan) 11,087 5,407

University of Manitoba (Canada) 24,989 1,647

Middle Eastern Technical University (Turkey) 2,247 1,659

University of Waterloo (Canada) 1,396 584

University of Auckland (New Zealand) 1,176 821

Total 56,362 25,239
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of our future work, we want to do 
more specific categorization based 
on an ontology such as the Open 
Directory Project (www.dmoz.org). 
We also want to provide search and 
browse services. 

There has been no drastic change in 
STEM output over the years, which 
should to some extent address con-
cerns regarding declining interest in 
STEM areas among students, particu-
larly in the US. However, US universi-
ties tend to have a sizeable population 
of international students, especially 
at the graduate level. Hence, we need 
additional metrics to identify STEM 
productivity for American students. 
Toward this goal, we have collected 
commonly occurring American sur-
names from census data.3 Using this 
information and the Dublin Core 
“contributor” metadata field, we will 
filter out the STEM dissertations and 
do timeline analysis to get a more re-
alistic picture of STEM productivity 
among American students. 

On a broader note, an important 
future goal is to expand our work 
to include ETD collections of uni-
versities beyond the NDLTD Union 
Catalog. Lessons learned during this 
pilot study will help immensely in an-
alyzing a larger collection.   
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Managing Multilingual 
S&T Knowledge

Christopher C. Yang,
Drexel University
Chih-Ping Wei,
National Tsing Hua University

To keep pace with rapid global ad-
vances in science and technology 
(S&T), organizations must constantly 
analyze the latest scientific discoveries 
or technological breakthroughs and 
then develop effective strategies to 
create and sustain market advantages 
in increasingly competitive business 
environments. Effective search and 
management of relevant S&T docu-
ments is a critical first step in technol-
ogy trend analysis, competitive intel-
ligence surveillance, and technology 
roadmapping.1,2 

Such documents can include sci-
entific articles, patent documents, 
and business newswires from vari-
ous sources. They are often created 
and maintained in heterogeneous 
language environments. Although 
substantial efforts have gone into fa-
cilitating cross-lingual information 
retrieval, little prior research exam-
ines the use of text mining to sup-
port effective multilingual knowledge 
(document) management. In this es-
say, we explore exciting research op-
portunities and important challenges 
in multilingual text mining for global 
S&T knowledge management.

An Illustrative Scenario
Tom, a senior fuel cell technology 
analyst, downloads thousands of US 
patents (in English) from the US Pat-
ent and Trademark Office (USPTO) 
website and organizes them into tech-
nological topics (categories). He also 
collects patent documents (in Chi-
nese) and wants to classify them on 
the basis of his existing categories. 
Tom thus faces a cross-lingual text 
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Figure 13. STEM ETDs. The distribution over the years for the US and the rest of the 
world (RoW) indicate that US STEM ETD output appears to be declining slightly.
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categorization (CLTC) challenge: au-
tomated learning from a training set 
of preclassified documents in one lan-
guage (L1), followed by classification 
of other documents available in a dif-
ferent language (L2). 

Tom’s patent repository now is 
polylingual—that is, his categories 
contain some patent documents in 
English and others in Chinese. Sub-
sequently, when Tom accesses new 
patents, in either English or Chinese, 
and assigns them to his patent reposi-
tory, he’s performing a polylingual 
text categorization (PLTC) task. This 
task entails automated learning from 
a training set of preclassified polylin-
gual documents (some in L1 and some 
in L2) and assigning unclassified doc-
uments available in L1 or L2 into the 
appropriate categories.

In addition to patent documents, 
Tom gathers scientific articles (in Eng-
lish) about fuel cell technology and 
maintains them using a preferred clas-
sification scheme, which might differ 
from what he uses to maintain the pat-
ent repository. His colleague, Jennifer, 
does the same thing, but she focuses 
on Chinese scientific articles and orga-
nizes them according to her preferred 
categories. Tom hopes to integrate Jen-
nifer’s Chinese repository into his Eng-
lish repository through cross-lingual 
category integration (CLCI). However, 
to do so, he must address the challenge 
of integrating different categorization 
schemes. Essentially, CLCI integrates 
a category set (the source catalog) that 
contains documents in L2 into another 
category set (the master catalog) that 
contains documents in L1.

Tom now has two repositories, both 
containing polylingual documents. 
To perform comprehensive technol-
ogy intelligence analyses that iden-
tify important technological threats 
and opportunities, he needs support 
for effective polylingual category in-
tegration (PLCI). Formally, PLCI ad-

dresses the challenge of integrating a 
source catalog into a master catalog 
when both catalogs contain polylin-
gual documents.

Cross-Lingual  
Text Categorization
As Figure 14a illustrates, CLTC deals 
with learning from a set of preclassi-
fied documents (the training corpus) 
in L1 and then classifying unclassi-
fied documents (the prediction cor-
pus) in L2. A major CLTC challenge 
is providing cross-lingual semantic 
interoperability—that is, establish-
ing a connection between represen-
tations of the training corpus in one 
language and representations of the 
prediction corpus in the other lan-
guage. Mitigating the language bar-
rier requires some form of transla-
tion, which involves two fundamental 
design issues.

Translation Mechanism
Previous CLTC studies have exam-
ined several translation mechanisms, 

including bilingual dictionaries, ma-
chine translation, and a bilingual 
thesaurus.3,4 

Bilingual dictionary translation can 
be proprietary, costly, and intoler-
ant of novel terms and proper nouns 
commonly found in S&T documents. 
Machine translation uses a system 
that translates a document from one 
language to another automatically, 
though the effectiveness of existing 
systems often isn’t satisfactory, par-
ticularly for documents that require 
greater contextual information for 
accurate translations. A bilingual 
thesaurus relies on the assumption 
that associated terms often co-occur 
in documents,5,6 and it can be con-
structed automatically from a parallel 
or comparable corpus.

Despite noise in the statistical na-
ture of a bilingual thesaurus, it offers 
desirable constructability, maintain-
ability, and capability with respect 
to novel terms and proper nouns. 
These properties make it relatively  
appealing. Prior studies concentrate 
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Figure 14. Illustrations of cross-lingual text categorization (CLTC) and polylingual 
text categorization (PLTC). (a) CLTC uses the categories established through the 
training corpus in one language to classify documents in another language. (b) PLTC 
uses the categories established through a polylingual training corpus to classify 
polylingual documents.
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primarily on employing one trans-
lation mechanism when developing 
their respective CLTC techniques. 
Examining the effects of different 
translation mechanisms on CLTC ef-
fectiveness in the context of global 
S&T knowledge management is es-
sential but has received little investi-
gation attention.

Translation Strategy
A translation can be performed on 
the training corpus (that is, trans-
late training documents from L1 to 
L2)3 or on the prediction corpus (that 
is, translate unclassified documents 
from L2 to L1).4 However, prior re-
search lacks theoretical justifica-
tions or empirical evidence regarding 
which strategy is more effective. This 
fundamental question requires thor-
ough examination. 

Other Research Issues
Besides these design issues, two re-
search questions also warrant inves-
tigation. First, most previous CLTC 
studies assign each unclassified doc-
ument to a category individually. 
However, the well-known word- 
mismatch problem can make cate-
gory assignments based on individual 
documents ineffective. One solution 
is to group similar unclassified docu-
ments into clusters using a document- 
clustering technique. We could then 
translate each cluster into another 
language (if employing a prediction-
corpus translation strategy) and, fi-
nally, assign all documents in each 
cluster to the same category. Devel-
oping and empirically evaluating a 
proper CLTC cluster-based category-
assignment method represents an in-
teresting research direction. 

Second, prior CLTC research 
doesn’t consider translation qual-
ity with regard to learning a clas-
sification model or classifier in the  
training-corpus translation strategy 

or assigning translated documents to 
categories in the prediction-corpus 
translation strategy. The translated 
terms in each document can vary 
considerably in quality. This means 
the translated documents can differ 
in quality as well. We therefore need 
to design appropriate methods for es-
timating translation quality at both 
term and document levels and to de-
velop effective learning algorithms 
or category assignment methods that 

can reveal the quality of translated 
training or prediction documents. 

Polylingual Text 
Categorization
As Figure 14b shows, PLTC differs 
from CLTC in that it constructs clas-
sifiers from a training corpus avail-
able in different languages and clas-
sifies unclassified documents in any 
of those languages. Because training 
documents exist in each language, 
we can simply consider PLTC as mul-
tiple independent monolingual text-
categorization problems. That is, we 
can construct a classifier for each 
language on the basis of the training 
documents available in that language. 
When a new document in a specific 
language becomes available, we use 
the corresponding classifier for cate-
gory assignment. 

However, this naïve approach em-
ploys the training documents in only 
one language to construct each mono-
lingual classifier. Hence, it can’t take 
advantage of important categorization 
information available in the training 
documents of the other language. 

We propose a feature reinforcement-
based PLTC (FR-PLTC) technique 
that takes the training documents of 
all languages into account when con-
structing a monolingual classifier for 
each specific language.7 Specifically, 
we first measure the discriminatory 
power of all features (terms) in each 
language’s training documents. Then 
we reassess the discriminatory power 
of each feature in one language by 
considering its related features in an-
other language, using a bilingual the-
saurus. With such cross-language 
checking, if a feature in L1 and its 
related features in L2 possess high 
discriminatory power, the feature is 
likely to possess greater discrimina-
tory power. However, inconsistent 
assessments between two languages 
reduce confidence in the resulting dis-
criminatory power. Accordingly, we 
select a set of features with the great-
est reassessed discriminatory power 
for each language. On the basis of the 
selected features for each language, 
we can then construct a monolingual 
classifier using the training docu-
ments available in that language. 

Our empirical evaluation shows 
that FR-PLTC significantly outper-
forms the naïve PLTC approach in 
terms of classification accuracy. It 
achieves a 5.42 percent improvement 
with tf∗idf (term frequency × inverse 
document frequency) as the represen-
tation scheme and a support vector 
machine as the underlying learning 
algorithm.

PLTC has received far less research 
attention than CLTC, and several im-
portant research issues remain open. 
For example, when constructing a 

We need to 
design appropriate 
methods for estimating 
translation quality  
at both term and 
document levels.
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monolingual classifier for a specific 
language, the FR-PLTC technique 
doesn’t employ the training docu-
ments available in another language 
to expand the training sample size. 
We might further improve its effec-
tiveness by including translated train-
ing documents, originally available in 
another language, into the target lan-
guage’s training corpus. 

Second, as mentioned earlier, trans-
lation quality issues must be addressed 
to fully realize the potential utilities 
of the suggested PLTC solution. 

Third, further research might con-
sider developing a PLTC technique 
that can construct a single language-
independent classifier, perhaps by 
employing latent semantic indexing 
(LSI) to build a language-indepen-
dent space on the basis of a parallel 
or comparable corpus. In this case, 
all polylingual training documents 
would be mapped onto an LSI space, 
which would allow for the construc-
tion of a single classifier from the 
mapped training documents. When 
classifying unclassified documents 
in any of those languages, we would 
first need to map the documents onto 
the LSI space, then use the language-

independent classifier for the category 
assignment. It would be interesting to 
investigate the conditions that favor 
the use of a PLTC technique employ-
ing a single, language-independent 
classifier compared with techniques 
involving multiple language-specific 
classifiers, such as FR-PLTC.

Cross-Lingual  
Category Integration
As Figure 15a depicts, a major CLCI 
objective is to find an appropriate cat-
egory in the master catalog for each 
document in the source catalog when 
documents in both catalogs are avail-
able in different languages. Several 
category integration techniques have 
been proposed in the literature,8,9 
but they all target a monolingual 
environment. 

As with CLTC, the major challenge 
of CLCI is overcoming the language 
barrier between catalogs. By prop-
erly translating the documents in one 
catalog, we transform the challenging 
CLCI task into a common monolin-
gual category-integration problem, 
which we can address with an appro-
priate existing category-integration 
technique. With this approach, we 

must therefore address the two design 
issues inherent to CLTC when devel-
oping a CLCI technique to support 
global S&T knowledge management. 
Specifically, we must select the most 
effective translation mechanism and 
identify a translation strategy (master 
catalog or source catalog) that seems 
likely to improve integration effec-
tiveness. Moreover, we might need to 
extend existing category-integration 
techniques to account for the varying 
quality of translated documents.

Polylingual  
Category Integration
Figure 15b illustrates the PLCI prob-
lem of integrating a source catalog 
into a master catalog when both cata-
logs consist of documents available in 
various languages. PLCI can be sim-
plified as multiple, independent mono-
lingual category integration (MnCI) 
problems—one for L1 and one for 
L2. However, similarly to PLTC, this 
naïve approach considers only mas-
ter and source documents in one lan-
guage during each MnCI task. It ig-
nores documents in another language, 
thus likely compromising the integra-
tion effectiveness.
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Figure 15. Illustrations of (a) cross-lingual category integration (CLCI) and (b) polylingual category integration (PLCI). CLCI finds 
a category in the master catalog in one language for each document in the source catalog in another language. PLCI integrates 
a source catalog into a master catalog when both catalogs consist of documents available in various languages. 
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To exploit the opportunities offered 
by polylingual documents in both 
catalogs, we see several directions 
worth pursuing. For example, the FR 
mechanism proposed in the FR-PLTC 
technique might be interesting. Spe-
cifically, for each language, we could 
incorporate the FR mechanism to se-
lect more representative features from 
the documents in the master catalog, 
then use an existing MnCI technique 
to integrate its corresponding source 
catalog into the master catalog in 
that language.

Another possible design would 
take a cross-lingual approach to ad-
dress PLCI. For example, to conduct 
category integration for L1, we could 
translate those documents originally 
available in L2 in the master cata-
log into L1, then perform MnCI for 
L1 by integrating the documents that 
appeared in L1 in the source cata-
log into the master catalog, which 
currently contains documents origi-
nally in L1 and those translated from 
L2. Likewise, we would perform this  
process for L2. Because each MnCI 
task uses a larger master catalog, the 
resulting integration effectiveness 
likely improves. If we further consider 
the quality of the translated documents 
when performing MnCI tasks, the ef-
fectiveness might improve further. 

Addressing the research oppor-
tunities we’ve identified could sub-
stantially broaden the spectrum of 
multilingual text-mining and its prac-
ticality for supporting global S&T 
knowledge management. These op-
portunities also share a common set 
of challenges that deserve further at-
tention. For example, competitive in-
telligence surveillance, which allows 
organizations to understand their cur-
rent and potential competitors better, 
often requires the extraction of names 

of different organizations, technolo-
gies, or products from various S&T 
documents. When dealing with mul-
tilingual documents, adequate cross-
lingual entity-resolution mechanisms 
are essential for effective global S&T 
analysis. Furthermore, some S&T 
documents are scientific or technolog-
ically oriented, whereas others have a 
predominantly business orientation. 
This increases the chance of different 
documents using different terms in 

referring to identical or similar con-
cepts. Establishing cross-domain in-
teroperability is essential, especially 
in multilingual environments.
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For multilingual 
documents, adequate 
cross-lingual entity-
resolution mechanisms 
are essential for effective 
global S&T analysis.


