

Knowledge and Reasoning for Answering Questions

Workshop associated with IJCAI05

Edinburgh, July 30th 2005

Proceedings edited by Farah Benamara, Marie-Francine Moens

and Patrick Saint-Dizier

KRAQ'05 - IJCAI workshop - July 30th 2005 1

Programme

Session 1 8.30-10.30
Being Erlan Shen: Identifying Answerable Questions,

H. Yu, C. Sable, USA.
Reasoning over Depedency Relations for QA,
 G. Bouma, J. Mur, G. Van Noord, the Netherlands.
Towards Answering procedural Questions,
 F. Aouladomar, France.
Towards a Framework for the Summarization of Help-Desk Responses
 Y. Marom, I. Zukerman, Australia.

10h30-11h00 Coffee break

11h00 – 11h45 Invited talk by Johan Bos, UK

11h45-12h15 Short papers and posters
Toward Question Answering for Simulation,

M. Core et ali. USA
A Question-Answering System for Portuguese,

C. Prolo et ali., Brasil and Portugal
Semantic Knowledge in Question-Answering Systems,

V. Barbier et ali., France
A Typology and Feature Set for Questions,

L. Aunimo, Finland
Recognition of Alternation Paraphrases: a robust and exhaustive symbolic approach,
 M. Amoia and C. Gardent, France.

12h15-13h30 lunch break and poster visits

Session 2 13h30-15h00
On the Effective Use of Cyc in a Question-answering System,
 J. Curtis et ali., USA.

An Inference Model for Semantic Entailment and Question Answering
 R. de Salvo Braz et ali., USA.
Using Information Fusion for Open-Domain Question Answering,
 T. Dalmas, B. Webber, UK.

15h00-15h30 Coffee Break

Session 3 15h30-16h45
Supervised Machine learning Techniques for Question Answering,

I. Zukerman et ali., Australia.
Invited talk : Marie-Francine Moens, Belgium (45 mns)

Panel Session: 17h00 – 18h00
Moderators: M. Minock (Sweden) and T. Poibeau (France)

KRAQ'05 - IJCAI workshop - July 30th 2005 2

Table of Contents

Being Erlan Shen: Identifying Answerable Questions, …………………………………...

H. Yu, C. Sable, USA.

Reasoning over Depedency Relations for QA, ……………………………………………
 G. Bouma, J. Mur, G. Van Noord, the Netherlands.

Towards Answering procedural Questions, ……………………………………………….
 F. Aouladomar, France.

Towards a Framework for the Summarization of Help-Desk Responses………………….
 Y. Marom, I. Zukerman, Australia.

Breakthroughs and Challenges in Computational Semantics, Implications ………………
for Question answering, Johan Bos, UK

Toward Question Answering for Simulation, M. Core et ali. USA……………………….

A Question-Answering System for Portuguese, ………………………………………….

C. Prolo et ali., Brasil and Portugal

Semantic Knowledge in Question-Answering Systems, ………………………………….

V. Barbier et ali., France

A Typology and Feature Set for Questions, ………………………………………………

L. Aunimo, Finland

Recognition of Alternation Paraphrases: a robust and exhaustive symbolic approach, …..
 M. Amoia and C. Gardent, France.

On the Effective Use of Cyc in a Question-answering System,…………………………...
 J. Curtis et ali., USA.

An Inference Model for Semantic Entailment and Question Answering………………….
 R. de Salvo Braz et ali., USA.

Using Information Fusion for Open-Domain Question Answering,………………………
 T. Dalmas, B. Webber, UK.

Supervised Machine learning Techniques for Question Answering,……………………...

I. Zukerman et ali., Australia.

Information Synthesis : a Glance at the future…………………………………………….

Marie-Francine Moens, Belgium

Where are the ‘Killer Applications’ of Restricted Domain Question Answering ?……….
 M. Minock (Sweden)

6

15

21

32

40

41

45

49

53

57

61

71

81

89

97

98

KRAQ'05 - IJCAI workshop - July 30th 2005 3

Foreword

The introduction of reasoning capabilities in question-answering (QA) systems appeared in
the late 70s. A second generation of QA systems, aimed at being cooperative, emerged in the
late 80s - early 90s. In these systems, quite advanced reasoning models were developed on
closed domains to go beyond the production of direct responses to a query, in particular when
the query has no response or when it contains misconceptions. More recently, systems such as
JAVELIN, Inference WEB or Cogex, operating over open domains, integrate gradually
inferential components, but not as advanced as those of the 90s. Performances of these
systems in the recent TREC-QA tracks show that reasoning components do improve the
response relevance and accuracy. They can also potentially be much more cooperative.
However, there is still a long way before being able to produce accurate, cooperative and
robust QA systems.

Recent foundational, methodological and technological developments in knowledge
representation (e.g. ontologies, knowledge bases incorporating various forms of
incompleteness or uncertainty), advanced reasoning forms (e.g. relaxation, intensional
calculus, data fusion), not necessarily based on unification, advanced language processing
resources and techniques (for question processing as well as for generating responses), and
recent progress in HLT make it possible to foresee the elaboration of much more accurate,
cooperative and robust systems dedicated to answering questions from textual data, from e.g.
online texts or web pages, operating either on open or closed domains.

The workshop will be organized around a few major questions of interest to a number of AI,
NLP, HLT and pragmatics people. One main question is the characterization of those
reasoning procedures that need to be developed to answer questions, either on closed or on
open domains. Then, are enhancing reasoning procedures and accuracy of knowledge
representation sufficient conditions to improve responses ? If not, what is the role of language
processing and what are the relevant paradigms (e.g. lexical inference) ? How do language
and reasoning interact ? Next, what are the language models and techniques appropriate for
producing responses which sound natural for the user (relevant, fluid, of an appropriate
granularity, with terms the user understands, etc.). Another perspective is the role of
pragmatics as a means, for example, to better capture the user's goals and intentions from his
query, and therefore to better organize the response. Pragmatics is also of importance to better
analyse the potential implicatures the user may draw from NL responses, in particular when
the response is not direct.

This relatively new area of research includes the following topics, a number of which are
addressed in the papers presented hereafter:

• Methodologies for intelligently answering questions,
• New types of questions and related KR, pragmatic and linguistic paradigms:

procedural questions (how), causal questions (why), questions with comparative
expressions, questions with negation, etc.

• Reasoning aspects:
 * information fusion,
 * search criteria expansion models (e.g. relaxation techniques),
 * summarization and intensional answers,
 * reasoning under uncertainty or with incomplete knowledge,

KRAQ'05 - IJCAI workshop - July 30th 2005 4

 * Detecting and resolving query failure (due to e.g. incomplete data, misconceptions
or false presuppositions)

• Knowledge representation and integration:
 * levels of knowledge involved (e.g. ontologies, domain knowledge),
 * knowledge extraction models and techniques to optimize response accuracy,
 * coherence and integration.

• Flexible and interactive systems possibly including a user model,
• Pragmatic dimensions of intelligently answering questions:

 * user intentions, plans and goals recognition in questions,
 * conversational implicatures in responses,
 * principles for the design of cooperative systems.

• Language processing:
 * question processing : parameters of interest for response production,
 * response generation (e.g. lexical choice, templates),
 * use of language resources for reasoning in question-answering,
 * explanation production (showing sources and inferences, reporting data
incompleteness, etc.)

• evaluation
 * End-to-end evaluation of complex question types,
 * Intrinsic evaluation of inference methods,
 * Data-intensive vs knowledge-intensive methods,
 * portability techniques for closed domains.

The programme committee was the following, we warmly thank all its members whose
contribution helped improve the papers presented here.

Farah Benamara, IRIT, France
Johan Bos, University of Edinburgh, UK
Sanda Harabagiu, University of Texas, USA
Eduard Hovy, ISI, USA
Daniel Kayser, LIPN, France
Mark Maybury, The MITRE Corp., USA
Michael Minock, University of Umea, Sweden
Marie-Francine Moens, KUL, Belgium
Jacques Moeschler, Geneva university, Switzerland
Dan Moldovan, University of Texas, USA
John Prager, IBM, USA
Ehud Reiter, University of Aberdeen, UK
Maarten de Rijke, University of Amsterdam, The Netherlands
Gérard Sabah, LIMSI, CNRS, France
Patrick Saint Dizier, IRIT, CNRS, France
Manfred Stede, University of Potsdam, Germany
Mathiew Stone, Center of Cognitive Science, Rutgers, USA
Kees Van Deemter, University of Aberdeen, UK
Ellen Voorhees, NIST, USA
Bonnie Webber, University of Edinburgh, UK

The workshop organizers,
Farah Benamara, Marie-Francine Moens, Patrick Saint-Dizier

KRAQ'05 - IJCAI workshop - July 30th 2005 5

Abstract

Research has shown that answers do not exist in
biomedical corpora for many questions posed by
physicians. We have therefore developed a
question filtering component that determines
whether or not a posed question is answerable.
Using 200 clinical questions that have been
annotated by physicians to be answerable or
unanswerable, we have explored the use of
supervised machine-learning algorithms to
automatically classify questions into one of these
two categories. We also have incorporated
semantic features from a large biomedical
knowledge terminology. Our results show that
incorporating semantic features in general
enhances the performance of question
classification and the best system is a
probabilistic indexing system that achieves an
80.5% accuracy. Our analysis also shows that
stop words may play an important role for
separating Answerable from Unanswerable.

1 Introduction

Chinese myth has long portrayed a powerful god

Erlang Shen, who has a magical third eye in the

middle of his forehead that sees truth. The real world

mixes truth and falsehood and questions may be

answerable or unanswerable. In the field of automatic

question answering (QA), most QA systems

implicitly assume that all questions are answerable.

This study presents what we believe is the first

attempt to separate answerable questions from

unanswerable ones. We are essentially aiming to

create the keen third eye to filter out unanswerable

questions. The answerable questions can then be

further processed for answer extraction and

generation; the unanswerable questions may be

further analyzed to determine the user’s intentions.

Automatic question answering applies artificial

intelligence and natural language processing

techniques to extract information from corpora or

databases in order to answer a user’s question. Since

no corpora or databases, no matter how large, can

incorporate the entire universe of knowledge, they

will not contain answers to certain questions. For

example, research (Jacquemart and Zweigenbaum

2003) has found that the largest text collection, the

World Wide Web, is not a good source for answering

medical, domain-specific questions. On the other

hand, biomedical literature and reputed online

medical databases are useful for this task (Sackett et

al. 2000, Straus and Sackett 1999). However, these

same biomedical resources can not answer the

question “What is causing her hives?”; this question

was posed by a family physician (Ely et al. 2002).

This study explores the use of supervised machine-

learning approaches to automatically identify whether

or not a question is answerable using biomedical

corpora and databases.

Determining whether or not a question is answerable

is a first step towards question answering. A question

answering system needs first to identify a user’s

intentions, and then to generate a useful answer.

Previously, studies have proposed models to offer

explanations for failed queries or the results of the

queries that are “unknown” (Chalupsky and Russ

2002). In this application, when a question is not

answerable, the question answering system may

further evaluate the question. For example, if the

unanswerable question is not related to the medical

domain, a system might return the question to user

Being Erlang Shen: Identifying Answerable Questions

Hong Yu
Columbia University

Department of Biomedical Informatics
622 West, 168th Street, VC-5, NY, NY 10032

yuh9001@dbmi.columbia.edu

Carl Sable
Cooper Union

Department of Electrical and Computer Engineering
51 Astor Place, NY, NY 10003

sable2@cooper.edu

Topics: language processing, reasoning aspects, knowledge representation and integration

KRAQ'05 - IJCAI workshop - July 30th 2005 6

and provide the justification that the system only

handles medical questions. If the unanswerable

question is ambiguous, a system could use

disambiguation to generate a list of non-ambiguous

questions, from which the user can identify one or

more according to his/her intentions. The efforts on

identifying a user’s intentions have been addresses in

earlier work (Chalupsky and Russ 2002, Harabagiu et

al. 2004, Gaasterland et. al. 1994, Grice 1975).

2 Related Work

Research on identifying a user’s intentions starts with

maxims of cooperative conversation (Grice 1975). A

review is given by (Gaasterland et. al. 1994), who

have analyzed cooperative answering as a specific

application of Grice's maxims of cooperative

conversation. According to these maxims, answers

(and other contributions to a conversation) should not

only be correct, but in addition, they should be

useful, they should not be misleading, and they

should not contain too much information. The

overview provided by Gaasterland and his colleagues

discusses how these maxims might be applied to

query/answer systems, which they define to include

not only question answering systems as defined in

this paper, but also database systems and deductive

databases that accept logical queries.

One interesting discussion in the work of Gaasterland

and his colleagues involve general categories of

reasons that a query or question might fail to have an

answer. For example, the wording of a question

might contain a false presupposition. An example in

the medical domain might be, “What drug can fight

the disease blindness?” The response “None” would

be incorrect, since it seems to validate the false

presupposition that blindness is a disease. A good

response might be “Blindness is not a disease.”

Another interesting case involves questions with

misconceptions, which are more general than false

presuppositions. Questions with misconceptions can

have correct answers that are still misleading. An

example in the medical domain might be “What drug

can a therapist prescribe to fight depression?” In this

case, the answer “None” would technically be correct

but misleading; a better response would be

“Therapists can not prescribe drugs.”

Chalupsky and Russ (2002) propose to provide a list

of plausible answers or explanations when exact

answers cannot be found in a database in response to

a user’s query. Possible explanations deal with

missing knowledge, limitations of resources, user

misconceptions, and bugs in the system. Chalupsky

and Russ have created a system called WhyNot,

which accepts queries to the general knowledge base

Cyc, and attempts to provide what they call partial

proofs for failed queries. An example provided by the

authors involves the question, “Is it true that anthrax

lethally infects animals?” The answer, according to

the system, is unknown, but WhyNot also determines

that the answer would be known if an animal is a

kind of mammal. WhyNot was built on a relational

database and does not handle ad hoc questions.

Harabagiu and her associates (2004) have proposed

methods to combine semantic and syntactic features

for identifying a user’s intentions. As stated in their

paper, if a user asks “Will Primer Minister Mori

survive the crisis?”, the method detects the user’s

belief that the position of the Prime Minister is in

jeopardy, since the concept DANGER is associated

with the words “survive” and “crisis”. In addition,

they propose that the predicate-argument structures

of a question can be used to coerce a user’s intention

when there exist questions with known intentions.

The work discussed in (Harabagiu et al. 2004)

derives intentions only from the questions, and does

not involve human-computer dialogue.

Many research groups have developed either rule-

based (Hughes 1986) or machine-learning approaches

(Hermjakob 2001, Zhang and Lee 2003) to

automatically classify questions into predefined

question types (e.g., definitional questions such as

“What is X”?) for the purpose of answer generation.

However, they all assume that all questions can be

answered. Our study presents a different dimension

that demonstrates that not all questions can be

answered, and that unanswerable questions can be

automatically identified.

This study is a part of our ongoing effort involving

the development of a domain-specific QA system,

BioMedQA, which will automatically generate

answers to questions posed by physicians and

biomedical researchers. In the following sections, we

first describe QA in general, as well as particular

considerations relevant to the development of a

domain-specific QA system. Next we describe our

question collection and our approaches of classifying

questions as Answerable or Unanswerable. We then

present and evaluate our results. We close our paper

with discussion, conclusions, and future work.

3 Question Answering

Question answering is an advanced form of
information retrieval in which focused answers are
generated for either user queries or ad hoc questions.
Most research development in the area is in the
context of open-domain, collection-based or web-

KRAQ'05 - IJCAI workshop - July 30th 2005 7

based QA. Largely driven by the Text REtrieval
Conference (TREC) QA track1, technologies have
been developed for generating short answers to
factual questions (e.g., “Who is the president of the
United States?”). Recently, the Advanced Research
and Development Activity (ARDA)’s Advanced
Question & Answering for Intelligence (AQUAINT)
program2 has supported QA techniques that generate
long answers for scenario questions (e.g., opinion
questions such as “What does X think about Y?” (Yu
and Hatzivassiloglou 2003)). Most QA systems
leverage techniques from several fields including
information retrieval (Rigsbergen 1979), which
generates query terms relevant to a question and
selects documents that are likely candidates to
contain answers; information extraction, which
locates portions of a document (e.g., phrases,
sentences, or paragraphs) that contain the specific
answers; and summarization and natural language
generation, which are used to generate coherent,
readable answers.

Recently there has been growing interest in domain-
specific question answering. For example, ACL 2004
dedicated a workshop to QA within restricted
domains. Domain-specific, biomedical QA can differ
from open-domain QA in at least two important
ways. For one, it might be possible to have a list of
question types that are likely to occur, and separate
answer strategies might be developed for each one.
Secondly, domain-specific resources such as
knowledge bases and tools exist with a level of detail
that might allow a deeper processing of questions
than is not possible for open-domain questions.

4 Question Collection and Annotation

Ely and his colleagues (Ely et al. 1999, Ely et al.
2000) have collected thousands of clinical questions
from more than one hundred family doctors. They
have excluded requests for facts that could be
obtained from the medical records (e.g., “What was
her blood potassium concentration?”) or from the
patient (e.g., “How long have you been coughing?”).
The National Library of Medicine has made available
a total of 4,653 clinical questions3 over different
studies (Alper et al. 2001, D'Alessandro et al. 2004,
Ely et al. 1999, Ely et al. 2000, Gorman et al. 1994,
Niu et al. 2003).

Although physicians tend to ask many questions
when caring for patients, studies have found that
many physicians cannot find satisfactory answers for
their questions. Ely and his colleagues have identified

1 http://trec.nist.gov/
2 http://www.informedia.cs.cmu.edu/aquaint/
3 http://clinques.nlm.nih.gov/JitSearch.html

59 obstacles that prevent physicians from finding
answers to some of those questions (Ely et al. 2002).
They found that the most common class of obstacle
preventing physicians from getting answers to their
clinical questions is that the information resources do
not always contain the answers. For example,
biomedical information resources can not answer
non-clinical questions such as “How do you stop
somebody with five problems, when their
appointment is only long enough for one?”

In addition, in the medical domain, physicians are
urged to practice Evidence Based Medicine when
faced with questions about how to care for their
patients (Gorman et al. 1994, Straus and Sackett
1999, Bergus et al. 2000). Evidence based medicine
refers to the use of the best evidence from scientific
and medical research to make decisions about the
care of individual patients. The needs of evidence
based medicine have also driven biomedical
researchers to provide evidence in their research
reports. With this in mind, Ely and his colleagues
have created an “evidence taxonomy” to organize
medical questions into five hierarchical categories
(shown in Figure 1).

In addition, Ely and his colleagues have manually
annotated 200 clinical questions, placing them into
the five leaf categories shown in Figure 1. Those 200
questions were randomly selected from the thousands
that they collected (Ely et al. 2002). After searching
for answers to these questions in biomedical literature
and online medical databases, Ely and his colleagues
have concluded that the Non-clinical, Specific, and
Non-evidence questions are not answerable, while
both subcategories of Evidence (i.e., Intervention and
No-intervention questions) are potentially answerable
with evidence. Non-clinical questions do not deal
with the specific domain, Specific questions require
information from a patient’s record, and Non-
evidence questions are questions for which the
answer is generally unknown. This results in a total
of 83 unanswerable questions and 117 answerable
questions. These 200 questions have been used in our

Figure 1: “Evidence taxonomy” created by Ely and

his colleagues (Ely et al. 2002) with examples.

Questions

Non-clinical Clinical

Specific General

No evidence Evidence

How do you stop somebody with five

problems, when their appointment is

only long enough for one?

What is causing

her anemia?

What is the name of that rash

that diabetics get on their legs?

Intervention No intervention

What is the drug of choice

for epididymitis?

How common is depression after

infectious mononucleosis?

KRAQ'05 - IJCAI workshop - July 30th 2005 8

study to automatically classify a question as either
Answerable or Unanswerable.

5 Supervised Machine-Learning

Separating Answerable from Unanswerable is a task
of document categorization. We have explored
supervised machine-learning approaches to
automatically classify a question into one of these
two categories. In the following subsections, we will
describe the machine-learning systems, the learning
features, the cross-validation methodology, and the
evaluation metrics used for our classification.

5.1 Systems

We have applied seven text categorization systems
using a variety of approaches. Five of the seven
systems comprise the publicly available Rainbow
package (McCallum 1996). The approaches used by
these systems are Rocchio/TF*IDF, K-nearest
neighbors (kNN), maximum entropy, probabilistic
indexing, and naïve Bayes. All of these approaches
have been used successfully for text categorization
tasks (Sebastiani 2002). We have also applied
support vector machines4 because it has shown to be
successful for text categorization tasks (Yang and Liu
1999, Sebastiani 2002). Additionally, we have
explored the machine-learning system, BINS (Sable
and Church 2001), which is a generalization of Naive
Bayes. Brief descriptions of these approaches are
given in the following subsections; see (Sable 2003)
for more detailed descriptions of these machine-
learning algorithms.

Rocchio/TF*IDF
A Rocchio/TF*IDF system (Rocchio 1971) adopts
TF*IDF, the vector space model typically used for
information retrieval, for text categorization tasks.
Rocchio/TF*IDF represents every document and
category as a normalized vector of TF*IDF values.
The term frequency (TF) of a token (typically a
word) is the number of times that the token appears
in the document or category, and the inverse
document frequency (IDF) of a token is a measure of
the token's rarity (usually calculated based on the
training set). For test documents, scores are assigned
to each potential category by computing the
similarity between the document to be labeled and
the category, often computed to be the cosine
measure between the document vector and the
category vector; the category with the highest score is
than chosen.

K-Nearest Neighbors (kNN)
A K-nearest neighbors system determines which
training questions are the most similar to each test

4 We have applied Libsvm, which is available at

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

question, and then uses the known labels of these
similar training questions to predict a label for the
test question. The similarity between two questions
can be computed as the number of overlapping
features between them, as the inverse of the
Euclidean Distance between feature vectors, or
according to some other measure. The kNN approach
has been successfully applied to a variety of text
categorization tasks (Sebastiani 2002, Yang and Liu
1999).

Naïve Bayes
The naïve Bayes approach is commonly used for
machine learning and text categorization tasks. Naïve
Bayes is based on Bayes' Law and assumes
conditional independence of features. For text
categorization, this “naive” assumption amounts to
the assumption that the probability of seeing one
word in a document is independent of the probability
of seeing any other word in a document, given a
specific category. Although this is clearly not true in
reality, Naive Bayes has been useful for many text
classification and other information retrieval tasks
(Lewis 1998). The label of a question is the category
that has the highest probability given the “bag of
words” in the document. To be computationally
feasible, log likelihood is generally maximized
instead of probability.

Probabilistic Indexing
This is another probabilistic approach that chooses
the category with the maximum probability given the
words in a document. Probabilistic indexing stems
from Fuhr’s probabilistic indexing paradigm (Fuhr
1988), which was originally intended for relevance
feedback and was generalized for text categorization
by Joachims (Joachims 1997), who considered it a
probabilistic version of a TF*IDF classifier, although
it more closely resembles naïve Bayes. Unlike naïve
Bayes, the number of times that a word occurs in a
document comes into play, because the probability of
choosing each specific word, if a word were to be
randomly selected from the document in question, is
used in the probabilistic calculation. Although this
approach is less common in the text categorization
literature, one author of this paper has seen that it is
very competitive for many text categorization tasks
(Sable 2003).

Maximum Entropy
This is another probabilistic approach that has been
successfully applied to text categorization (Nigam et.
al. 1999). A maximum entropy system starts with the
initial assumption that all categories are equally
likely. It then iterates through a process known as
improved iterative scaling that updates the estimated
probabilities until some stopping criterion is met.
After the process is complete, the category with the
highest probability is selected.

KRAQ'05 - IJCAI workshop - July 30th 2005 9

Support Vector Machines (SVMs)
A support vector machine system is a binary
classifier that learns a hyperplane in a feature space
that acts as an optimal linear separator which
separates (or nearly separates) a set of positive
examples from a set of negative examples with the
maximum possible margin (the margin is defined as
the distance from the hyperplane to the closest of the
positive and negative examples). SVMs have been
widely tested to be one of the best machine-learning
classifiers, and previous studies have shown that
SVMs outperform other machine learning algorithms
for open-domain sentence classification (Zhang and
Lee 2003) and other text categorization tasks (Yang
and Liu 1999, Sebastiani 2002).

BINS
The BINS system (Sable and Church 2001) uses a
generalization of Naive Bayes. BINS places words
that share common features into a single bin.
Estimated probabilities of a token appearing in a
document of a specific category are then calculated
for bins instead of individual words, and this acts as a
method of smoothing which can be especially
important for words with scarce evidence. BINS has
proven to be very competitive for many text
categorization tasks (Sable 2003, Yu and Sable
2005).

5.2 Learning Features

We have explored bag of words as learning features.

Since our collection consists of biomedical, domain-

specific questions, we have also incorporated

concepts and semantic types from the largest

biomedical knowledge resource Unified Medical

Language System (UMLS), as additional learning

features for question classification. Including the

UMLS features represents a method of class-based

smoothing (Resnik, 1993) where the probabilities of

individual or sparse words are smoothed by the

probabilities of larger or less sparse semantic classes.

In the following subsection, we will describe UMLS

concepts and semantic types.

5.3 The Unified Medical Language System

The National Library of Medicine (NLM) has created
the Unified Medical Language System (UMLS)5
(Humphreys and Lindberg 1993) to aid in the
development of computer systems that process text in
the biomedical domain. The UMLS includes the
Metathesaurus, a large database that incorporates
more than one million biomedical concepts plus
synonyms and concept relations. For example, the
UMLS links the following synonymous terms as a
single concept: Achondroplasia, Chondrodystrophia,

5 http://www.nlm.nih.gov/research/umls/

Chondrodystrophia fetalis, and Osteosclerosis
congenita.

 The UMLS also consists of the Semantic Network,
which contains 135 semantic types; each semantic
type represents a more general category to which
certain specific UMLS concepts can be mapped via
is-a relationships (e.g., Pharmacologic Substance).
The Semantic Network also describes a total of 54
types of semantic relationships (e.g., hierarchical is-a
and part-of relationships). Each specific UMLS
concept in the Metathesaurus is assigned one or more
semantic types. For example, Arthritis is assigned to
one semantic type, Disease or Syndrome;
Achondroplasia is assigned to two semantic types,
Disease or Syndrome and Congenital Abnormality.

 The National Library of Medicine makes available
MMTx6, a programming implementation of MetaMap
(Aronson 2001), which maps free text to UMLS
concepts and their associated semantic types. The
MMTx program first parses text, separating the text
into noun phrases. Each noun phrase is then mapped
to a set of possible UMLS concepts, taking into
account spelling and morphological variations, and
each concept is weighted, with the highest weight
representing the most likely mapped concept. The
UMLS concepts are then mapped to semantic types
according to definitive rules as described in the
previous paragraph. MMTx can be used either as a
standalone application or as an API that allows
systems to incorporate its functionality. In our study,
we have applied MMTx to map terms in a question to
appropriate UMLS concepts and semantic types; we
have added the resulting concepts and semantic types
as additional features for question classification.

5.4 Cross-Validation

To evaluate the performance of each system, we have
performed four-fold cross-validation. Specifically,
we have randomly divided our corpus into four
subsets of 50 questions each for four-fold cross-
validation experiments; i.e., we train on 150
questions and test on the other 50, and perform four
such experiments with each of the text-categorization
system that we have tested. We have performed these
experiments using bag of words alone as well as bag
of words plus combinations of the other features
discussed in the previous subsection.

5.5 Evaluation Metrics

Results are reported according to two metrics. The
first metric is overall accuracy, which is simply the
percentage of questions that are categorized correctly
(i.e., they are correctly labeled as Answerable or
Unanswerable). A simple baseline system that

6 http://mmtx.nlm.nih.gov/

KRAQ'05 - IJCAI workshop - July 30th 2005 10

automatically categorizes all questions as Answerable
(something that most automatic QA systems assume
anyway) would achieve an overall accuracy of
117/200 = 58.5%.

The second metric is the F1 measure (Rigsbergen
1979) for the Answerable category. The F1 measure
combines the precision (P) for the category (the
number of documents correctly placed in the category
divided by the total number of document placed in
the category) with the recall (R) for the category (the
number of documents correctly placed in the category
divided by the number of documents that actually
belong to the category). The metric is calculated as
F1 = (2 * P * R) / (P + R); the result is always in
between the precision and the recall but closer to the
lower of the two, thus requiring a good precision and
recall in order to achieve a good F1 measure.

 6 Results

Since we have applied MMTx for identifying
appropriate UMLS concepts and semantic types for
each question, which are then included as features for
question classification, we have evaluated the
precision of MMTx for this task. One of the authors
(Dr. Carl Sable) has manually examined the 200
questions comprising our corpus as described in
Section 3. MMTx assigns 769 UMLS Concepts and
924 semantic types to the 200 questions (remember
that some UMLS concepts are mapped to more than
one semantic type, as described in Section 5.3). Our
analysis has indicated that 164 of the UMLS Concept
labels and 194 of the semantic type labels are wrong;
this indicates precisions of 78.7% and 79.0%,
respectively. An example of a case that MMTx gets
wrong is the abbreviation “pt”, which, in this corpus,
is often used as an abbreviation for “patient”; MMTx
typically assigns this to the UMLS concept pint and
the semantic type Quantitative Concept. Note that
manually estimating the recall of MMTx would be
difficult, since it would require an expert that is
familiar with all possible UMLS concepts and the
ways to express them.

We have compared the performance of the machine-
learning systems specified in Section 5.1 used to
label questions as Answerable or Unanswerable with
feature combinations described in Sections 5.2 and
5.3. Table 1 shows the results of all systems tested
using the cross-validation procedure explained in
Section 5.4. For four of the six feature combinations,
the system that achieves the best performance is the
Probabilistic Indexing system; the overall accuracy is
as high as 80.5% and the F1 measure for the
Answerable category is as high as 83.0%. We have
also found that incorporating UMLS concepts or
semantic types often improves performance
compared to using bag-of-words only.

Table 2 lists six questions that are predicted
incorrectly by the best machine-learning classifier
(i.e., probabilistic indexing with bag-of-words and
UMLS concepts as features). Questions are
presented exactly as they were expressed by
physicians, including bad grammar and incorrect
spellings. Since we can not control what physicians
will type, these represent complexities that will have
to be dealt with by a real-world system.

Answerable:
1) What is best time to get OB ultrasound for dating
and to see other things?
2) What are long-term options for hemorrhagic
gastritis beyond H2 blockers?
3) Does Zoloft cause stomach upset?

Unanswerable:
4) What is the cause of this patient’s tremor?
5) What dose the HMO formulary say I can use for
this patient’s nasal condition?
6) How long shall I treat knee injury w conservative
measures before referring?

Table 2: Three Answerable and three Unanswerable

questions that the classifier predicts incorrectly.

In order to examine useful features for the
classification, we have calculated log likelihood
ratios of word occurrences in each of our two
categories (i.e., Answerable and Unanswerable). For
each word/category pair, the level of indication of the
word for the category is computed as the log
likelihood of seeing the word in a question of the
specified category minus the log likelihood of seeing
the word in the other category. Thus, the strength of
the word for a category will only be positive if it is
the more likely category of the two, given the word,
and the magnitude of the strength will depend on the
likelihood of the other category. For each question,
the strength of all words in the question have been
computed for both categories based on evidence from
the other questions (one category will have a positive
strength and the other category will have a negative
strength for each word), and the top words for both
categories have been examined. For example,
consider the following Answerable question:

"How soon should you ambulate a patient with a deep
vein thrombosis?"

The top three words indicating the Answerable and
Unanswerable categories, with scores calculated as
described above (higher scores representing stronger
indications of a category), are:

Answerable: you (1.8), should (1.0), how (0.5)
Unanswerable: a (1.6), patient (0.2), with (-0.2)

KRAQ'05 - IJCAI workshop - July 30th 2005 11

Note that the word “with” has a negative weight; this
means that it is really an indicator of an Answerable
question. So this question contains only two words
that are indicative of an Unanswerable question.
Note that the words “ambulate” and “thrombosis” are
infrequent and do not show up in either list; it is
likely that these words do not occur in any other
question, in which case there is no evidence for them
and their scores would be 0 for both categories.

We have observed that many stop words have high
scores and we have therefore hypothesized that stop
words may play an important role for this
classification task. Studies have found that for some
non-content based categorization tasks, stop words,
have proven to be useful; one example is authorship
attribution (Mosteller and Wallace 1963). Table 3
shows the change in classification performance when
we remove the stop words from the questions. (These
results have only been computed for the Rainbow
systems, which provide a simple mechanism to do
this.) Our results show that when we exclude stop
words, this tends to decrease performance, and in
particular this is true for the naïve Bayes and
probabilistic indexing systems. These results provide
evidence that stop words may play an important role
for classifying a question posed by a physician as
either Answerable or Unanswerable.

7 Discussion

Based on overall accuracy results, all systems beat
random guessing (50.0%) and the simple baseline
system that is described in Section 5.5. (58.5%).
Furthermore, the F1 measure for the Answerable
category is higher than the overall accuracy for each
system; this indicates that all systems have a slight
disposition towards the Answerable category (based
on the training documents). Compared to typical text
categorization tasks, our task is more challenging
because our data set is small (only 150 short
questions are used for training at one time) which
leads to a small feature space. Nevertheless, most

systems achieve reasonable performance with several
feature combinations, and the probabilistic indexing
system achieves and overall accuracy that is up to
22.0% higher than the simple baseline system.

A manual inspection of the questions that are
classified incorrectly reveals the problem of data
sparseness; for most of these questions, the majority
of words do not occur in any other question in the
data set. For example, in Table 2, the word
“hemorrhagic” in question 2 does not appear in any
other question. We speculate that a larger training set
could potentially alleviate this problem and boost our
results. We have also found that some questions may
be mislabeled. For example, the question “Would it
be better to put her on a potassium sparing diuretic or
just potassium” has been labeled as Answerable, but
it seems to us that this is a patient-specific question
that should be labeled as Unanswerble.

Our results show a moderate increase of performance
when including the UMLS features. We have
observed that many UMLS concepts in these
questions, when labeled correctly, represent
information that was already present in the bag of
words representation. We also found that some
semantic types tend to be very general, appearing in
both Answerable and Unanswerable questions
commonly. For example, the semantic type Disease
or Syndrome occurs 44 times in 37 Answerable
questions and 30 times in 26 Unanswerable
questions. Therefore, these tokens will not play an
important role for classification. However, we
believe that this same information will be
indispensable for potential future work discussed in
Section 8.

8 Conclusions and Future Work

This paper describes what we believe is the first
attempt in the field of question answering to
automatically identify answerable questions, i.e., the
questions for which answers can be found in the

Table 1: Percentages for overall accuracy and F1 scores (in parentheses) of machine-learning systems with different

combinations of learning features for classifying Answerable versus Unanswerable biomedical questions.

“*” indicates Rainbow implementation

“**” indicates libsvm implementation

Performance Using Features (C means UMLS Concepts, ST means semantic types)
ML Approach

Bag of Words Words+C Words+ST Words+C+ST C only ST only

*Rocchio/TF*IDF 74.0 (77.4) 72.5 (75.8) 74.5 (77.5) 74.0 (77.2) 67.6 (70.3) 65.0 (68.5)

*kNN 68.5 (71.7) 69.0 (73.5) 65.5 (69.9) 65.5 (70.1) 65.0 (66.0) 61.5 (61.6)

*MaxEnt 66.0 (69.6) 68.0 (73.1) 70.5 (76.1) 69.5 (74.9) 65.0 (67.6) 65.5 (70.9)

*Prob Indexing 78.0 (81.7) 80.5 (83.0) 80.0 (82.9) 79.0 (82.1) 70.0 (70.8) 66.5 (70.0)

*Naïve Bayes 68.0 (74.8) 74.5 (77.9) 73.5 (77.6) 73.0 (76.7) 71.0 (76.0) 64.0 (69.2)

**SVMs 67.5 (74.9) 68.0 (74.6) 69.0 (75.4) 67.0 (73.6) 62.5 (70.1) 67.0 (69.8)

BINS 72.0 (74.5) 72.0 (75.2) 68.5 (72.2) 66.5 (69.1) 66.0 (70.7) 58.5 (64.4)

KRAQ'05 - IJCAI workshop - July 30th 2005 12

available corpora. Our results are promising; the best
system achieves an 80.5% overall accuracy for
separating Answerable from Unanswerable questions
based on a small training set. We consider this result
to represent an important proof-of-concept. In the
future, we expect that biomedical QA systems such
as BioMedQA will be able to accurately distinguish
Answerable from Unanswerable questions relying on
more advanced processing described in the following
paragraph.

We believe that it will eventually be possible to
automatically decompose biomedical questions
according to component question types, which are
described in (Ely et al. 1999); for example, “What are
the affects of <drug> on <disease>?”. We speculate
that the recognition of UMLS concepts and semantic
types using tools such as MMTx will play a key role
in this type of question classification. If questions can
be accurately mapped to component question types,
then the filtering of unanswerable questions will
become straight-forward; an even greater benefit will
be that specific answer strategies could be developed
for each answerable component question type.

Acknowledgements

We thank Dr. John Ely, Dr. Jerry Osheroff, and Dr.

James Cimino for valuable discussion and for making

their annotation available to us. This project is

supported by JDRF 6-2005-835. Any opinions,

findings, or recommendations are those of the authors

and do not necessarily reflect JDRF’s views.

References

Allen, J.F. and C.R. Perrault. 1986. Analyzing

intention in utterances. In B.J. Grosz, K.S.

Jones, and B.L. Weber, editors, Readings in

Natural Language Processing, Pages 441-

458. Morgan Kaufmann Publishers, Inc.,

Los Altos, California, 1986.

Alper, B., J. Stevermer, D. White, and B. Ewigman.

2001. Answering family physicians' clinical

questions using electronic medical

databases. J Fam Pract 50: 960-965.

Aronson, A. 2001. Effective Mapping of Biomedical

Text to the UMLS Metathesaurus: The

MetaMap Program. American Medical

Information Association.

Bergus, G.R., Randall, C.S., Sinift, S.D. and D.M.

Rosenthal. 2000. Does the structure of

clinical questions affect the outcome of

curbside consultations with specialty

colleagues? Arch Fam Med. 9(6): 541-7.

Chalupsky, H. and T.A. Russ. 2002. WhyNot:

Debugging Failed Queries in Large

Knowledge Bases. In Proceedings of the

fourteenth innovative applications of

artificial intelligence, pages 870-877, AAAI

Press.

D'Alessandro, D.M., Kreiter, C.D., and M.W.

Peterson. 2004. An evaluation of

information seeking behaviors of general

pediatricians. Pediatrics 113: 64-69.

Ely, J., J. Osheroff, M. Ebell, G. Bergus, B. Levy ,

M. Chambliss, and E. Evans. 1999. Analysis

of questions asked by family doctors

regarding patient care. BMJl: 358-361.

Ely, J., J. Osheroff, M. Ebell, M. Chambliss, D.

Vinson, J. Stevermer, and E. Pifer. 2002.

Obstacles to answering doctors' questions

about patient care with evidence: qualitative

study. BMJ 324: 710-713.

Ely, J., J. Osheroff, P. Gorman, M. Ebell, M.

Chambliss, E. Pifer, and P. Stavri. 2000. A

taxonomy of generic clinical questions:

clasification study. BMJ 321: 429-432.

Fuhr, N. 1998. Models for retrieval with probabilistic

indexing. Information Processing and

Management 25(1):55-72.

Gaasterland, T., P. Godfrey, and J. Minker. 1994. An

overview of cooperative answering. In

Nonstandard Queries and Nonstandard

Answers, pages 1-40, Clarendon Press.

Gorman, P., J. Ash, and L. Wykoff. 1994. Can

primary care physician's questions be

answered using hte medical journal

literature? Bull Med Libr Assoc 82: 140-146.

Performance Difference when Stop Words are Excluded
ML Approach

Bag of Words Words+C Words+ST Words+C+ST

*Rocchio/TF*IDF -3.0 (-3.1) -6.5 (-6.4) -5.5 (-4.2) -4.5 (-3.4)

*kNN +1.5 (+1.4) -1.0 (-2.1) -1.5 (-1.2) -3.0 (-3.1)

*MaxEnt +0.5 (-2.2) -7.5 (-7.9) -2.5 (-1.5) -2.0 (-0.8)

*Prob Indexing -3.0 (-4.4) -6.5 (-7.5) -7.5 (-6.7) -4.0 (-3.5)

*Naïve Bayes -6.0 (-3.7) -9.5 (-7.8) -5.0 (-5.4) -6.5 (-7.6)

Table 3: Increase (+) or decrease (-) of overall accuracy and F1 scores (in parentheses) after

we remove stop words for classifying Answerable versus Unanswerable biomedical questions.

 “*” indicates Rainbow implementation

KRAQ'05 - IJCAI workshop - July 30th 2005 13

Grice, H. 1975. Logic and conversation. In Syntax

and Semantics, Academic Press.

Harabagiu, S.M., Maiorano, S.J., Moschitti, A, and

C.A. Bejan. 2004. Intentions, implicatures

and processing of complex questions. In

HLT-NAACL Workshop on Pragmatics of

Question Answering.

Hermjakob, U. 2001. Parsing and question

classification for question answering. In

Proceedings of ACL Workshop on Open-

Domain Question Answering.

Hovy, E., Gerber, L., Hermjakob, U., Junk, M., and

C.Y. Lin. Question answering in

Webclopedia. In Proceedings of the TREC-9

Conference.

Hughes, S. 1986. Question classification in rule-

based systems. In Annual Technical

Conference of the British Computer Society

Specialist Group on Expert Systems.

Humphreys, B. L., and D. A. Lindberg. 1993. The

UMLS project: making the conceptual

connection between users and the

information they need. Bull Med Libr Assoc

81: 170-7.

Jacquemart, P., and P. Zweigenbaum. 2003. Towards

a medical question-answering system: a

feasibility study. Stud Health Technol

Inform 95: 463-8.

Joachims, T. 1997. A probabilistic analysis of the

Rocchio algorithm with TFIDF for text

categorization. In Proceedings of the 14th

International Conference on Machine

Learning.

Lewis, D. 1998. Naive (Bayes) at forty: the

independence assumption in information

retrieval. In Proceedings of the European

Conference on Machine Learning.

McCallum, A. 1996. A toolkit for statistical language

modeling, text retrieval, classification, and

clustering.

http://www.cs.cmu.edu/~mccallum/bow.

Mosteller, F. and D. Wallace. 1963. Inference in an

authorship problem. Journal of the American

Statistical Association 58:275-309.

Nigam, K.; Lafferty, J.; and McCallum, A. 1999.

Using maximum entropy for text

classification. In Proceedings of the IJCAI-

99 workshop on machine learning for

information filtering.

Niu, Y., G. Hirst, G. McArthur, and P. Rodriguez-

Gianolli. 2003. Answering clinical questions

with role identification. ACL workshop on

natural language processing in biomedicine.

Resnik, P. 1993. Selection and information: A class-

based approach to lexical relationships. PhD

thesis. Department of Computer and

Information Science, University of

Pennsylvania.

Rigsbergen, V. 1979. Information Retrieval, 2nd

Edition. Butterworths, London.

Rocchio, J. 1971. Relevance feedback in information

retrieval. In The Smart Retrieval System:

Experiments in Automatic Document

Processing, pages 313-323, Prentice Hall.

Sable, C. 2003. Robust Statistical Techniques for the

Categorization of Images Using Associated

Text. Columbia University, New York.

Sable, C., and K. Church. 2001. Using Bins to

empirically estimate term weights for text

categorization. EMNLP, Pittsburgh.

Sackett, D., S. Straus, W. Richardson, W. Rosenberg,

and R. Haynes. 2000. Evidence-Based

Medicine: How to practice and teach EBM.

Harcourt Publishers Limited, Edinburgh.

Sebastiani, F. 2002. Machine learning in automated

text categorization. ACM Computing

Surveys. 34: 1-47.

Straus, S., and D. Sackett. 1999. Bringing evidence to

the point of care. Journal of the American

Medical Association 281: 1171-1172.

Yang, Y., and X. Liu. 1999. A re-examination of text

categorization methods. In Proceedings in

the 22nd Annual International ACM SIGIR

Conference on Research and Development

in Information Retrieval.

Yu, H., and V. Hatzivassiloglou. 2003. Towards

answering opinion questions: Separating

facts from opinions and identifying the

polarity of opinion sentences. EMNLP.

Yu, H., and C. Sable, and H. R. Zhu. 2005.

Classifying medical questions based on an

evidence taxonomy. Forthcoming.

Zhang, D. and Lee, WS. 2003. Question

classification using support vector machines.

In Proceedings of the 26
th

 Annual

International ACM SIGIR conference, pages

26-32.

KRAQ'05 - IJCAI workshop - July 30th 2005 14

Reasoning over Dependency Relations for QA∗

Gosse Bouma and Jori Mur and Gertjan van Noord
Information Science

Rijksuniversiteit Groningen
Postbus 716, 9700 AS Groningen
{gosse,mur,vannoord}@let.rug.nl

Abstract

We present a QA system in which question anal-
ysis, off-line answer extraction and reranking and
identification of potential answers from an IR all
make use of syntactic dependency relations. We
show that the addition of equivalence rules over
patterns of dependency relations, which capture
cases where different syntactic patterns express the
same semantic relationship, improves the perfor-
mance of various modules of the system.
Keywords: Reasoning, Language Processing.

1 Introduction
English QA systems can make use of robust wide-coverage
parsers [Lin, 1994; Collins, 1999; Briscoe and Carroll, 2002;
Clark and Curran, 2004], which either produce dependency
relations directly (i.e. tuples of the form 〈Head, Rel,
Dep〉, where Head is the head word, Rel the name of a de-
pendency relation, and Dep the head word of the dependent),
or which can be used to derive such tuples. For question anal-
ysis (i.e. the task of determining, among others, what the cat-
egory of the answer to a question is), the use of dependency
relations is relatively wide-spread as it tends to produce more
accurate results than regular expressions.

The use of dependency information for answer identifica-
tion (i.e. the task for finding an exact answer in a list of
passages returned by an IR system) is much less common.
One reason is the fact that parsing of large amounts of text
remains a challenge, even for English. Most QA systems
make use of an IR step to retrieve a reasonably sized sub-
set of text fragments relevant to the question from the full
document collection. Full parsing of these fragments is often
not attempted, however. Instead, keyword matching, regular
expressions, part-of-speech tagging, and recognition of base
constituents is used for finding the exact answer. Notable ex-
ceptions are [Katz and Lin, 2003], who processed a text col-
lection (of about 20,000 articles) exhaustively using Minipar,
and extracted specific relation tuples from the resulting de-
pendency tuples, and [Litkowski, 2004], who describes a QA

∗This research was carried out as part of the research program
for Interactive Multimedia Information Extraction, IMIX, financed
by NWO, the Dutch Organisation for Scientific Research.

system based on a fully parsed corpus, stored in XML. A sec-
ond issue which has been addressed by several researchers is
how to use dependency relations exactly. Several researchers
require an exact match between dependency tuples derived
from the question and the answer. This is true for the QA
systems of both [Katz and Lin, 2003] and [Litkowski, 2004].
The latter uses XPath to generate queries which XML docu-
ments must match. Generic metrics, applicable to all question
types, have been proposed as well. [Punyakanok et al., 2004]
compute the edit distance between the dependency trees of
the question and answer, and select answers from sentences
which minimize this distance. Comparing trees in a prin-
cipled way is difficult, and most researchers therefore turn
dependency trees (as produced by a parser) into sets of de-
pendency tuples. The PiQASso system [Attardi et al., 2002]
and AnswerFinder [Mollá and Gardiner, 2005] compute the
match between question and answer using a metric which ba-
sically computes the overlap in dependency relations between
the two.

Although dependency relations eliminate many sources of
variation that systems based on surface strings have to deal
with, it is also true that the same semantic relations can some-
times be expressed by several dependency relation patterns.
[Lin and Pantel, 2001] show how dependency paths express-
ing the same semantic relation can be acquired from a corpus
automatically. [Rinaldi et al., 2003] argue that such equiv-
alences, or paraphrases, can be especially useful for QA in
technical domains.

In this paper, we present a QA system for Dutch, which
makes extensive use of dependency relations. We show that
an existing, wide-coverage, parser for Dutch can be used ef-
fectively for QA by incoporating Named Entity classification
and by using a disambiguation model trained on a representa-
tive corpus fragment. The use of dependency relations in var-
ious parts of the QA system is supported by a module which
allows dependency patterns to be (partially) matched against
dependency relations. Furthermore, syntactic variation is ac-
counted for by formulating equivalence relations over depen-
dency patterns. We show that both the use of dependency
matching in general, and the addition of equivalence rules,
improves the performance of our QA system.

KRAQ'05 - IJCAI workshop - July 30th 2005 15

2 In-depth Dependency Analysis for QA
The Alpino system is a linguistically motivated, wide-
coverage, grammar and parser for Dutch. The constraint-
based grammar follows the tradition of HPSG [Pollard and
Sag, 1994]. It currently consists of over 500 grammar rules
(defined using inheritance) and a large and detailed lexicon
(over 100.000 lexemes). To ensure coverage, heuristics have
been implemented to deal with unknown words and ungram-
matical or out-of-coverage sentences (which may neverthe-
less contain fragments that are analyzable). The grammar
provides a ’deep’ level of syntactic analysis, in which WH-
movement, raising and control, and the Dutch verb cluster
(which may give rise to ’crossing dependencies’) are given
a principled treatment. The output of the system is a depen-
dency graph, compatible with the annotation guidelines of the
Corpus of Spoken Dutch.

A left-corner chart parser is used to create the parse for-
est for a given input string. A manually corrected treebank
of 140.000 words was used to train a maximum entropy dis-
ambiguation model. Beam-search is used as a heuristic to
extract the most probable parse from the parse forest effe-
ciently. [Malouf and van Noord, 2004] show that the accuracy
of the system, when evaluated on a test-set of 500 newspaper
sentences, is over 88%, which is in line with state-of-the-art
systems for English.

For the QA task, the disambiguation model was retrained
on a corpus which contained additional material consisting of
the (manually corrected) dependency trees of 650 quiz ques-
tions.1 The retrained model achieves an accuracy on 92.7%
on the CLEF 2003 questions and of 88.3% on CLEF 2004
questions.

A second extension of the system for QA, was the inclu-
sion of a Named Entity Classifier. The Alpino system already
includes heuristics for recognizing proper names. Thus, the
classifier needs to classify strings which have been assigned a
NAME part of speech by grammatical analysis, as being of the
subtype PER, ORG, GEO or MISC.2 To this end, we collected
lists of person names (120K), geographical names (12K), or-
ganization names (26k), and miscalleneous items (2K). The
data are primarily extracted from the Twente News Corpus,
a collection of over 300 million words of newspaper text,
which comes with annotation for the names of people, organi-
zations, and locations, involved in a particular news story. For
unknown names, a maximum entropy classifier was trained,
using the Dutch part of the shared task for CONLL 2003.3

The accuracy on unseen CONLL data of the resulting classifier
(which combines dictionary look-up and a maximum entropy
classifier) is 88.2%.

We have used the Alpino-system to parse the full text col-
lection for the Dutch CLEF QA-task. To this end, the text col-
lection was tokenized (into 78 million words) and segmented
into (4.1 million) sentences. Parsing this amount of text takes

1From the Winkler Prins spel, a quiz game. The material was
made available to us by the publisher, Het Spectrum, bv.

2Various other entities which sometimes are dealt with by NEC,
such as dates and measure phrases, can be identified using the infor-
mation present in POS tags and dependency labels.

3http://cnts.uia.ac.be/conll2003/ner/

well over 500 CPU days. We used a Beowulf Linux cluster of
128 Pentium 4 processors4 to complete the process in about
three weeks. The dependency trees are stored as (25 Gb of)
XML. Fortunately, the analyzed material is not only useful
for our QA system. It has been used to improve the cover-
age of the lexicon by error-mining [van Noord, 2004], and is
a rich source of data for corpus linguistics. It has also been
used by other research groups.5

3 Equivalences over Dependency Relations
Several components of our QA system make use of depen-
dency relations. All of these components need to check
whether a given sentence satisfies a certain syntactic pattern.
We have developed a seperate module for dependency pattern
matching, which also accounts for syntactic variation.

The dependency analysis of a sentence gives rise to a set
of dependency relations of the form 〈 Head/HIx, Rel,
Dep/DIx 〉, where Head is the root form of the head of the
relation, and Dep is the head of the constituent that is the
dependent. HPos and DIx are string indices, which distin-
guish repeated occurrences of the same token in a string, and
Rel is the name of the dependency relation. For instance, the
dependency analysis of sentence (1-a) is (1-b).

(1) a. Mengistu kreeg asiel in Zimbabwe (Mengistu
was given asylum in Zimbabwe)

b.

〈krijg/2, su, mengistu/1〉,
〈krijg/2, obj1, asiel/3〉,
〈krijg/2, mod, in/4〉,
〈in/4, obj1, zimbabwe/5〉

A dependency pattern is a set of (partially underspecified) de-
pendency relations:

(2)

{

〈krijg/K, obj1, asiel/A〉,
〈krijg/K, su, Su/S〉

}

The following Prolog program defines when a pattern
matches a set of dependency relations:

match([],_).
match(Pat,Rels) :-

equivalent(LHS,RHS),
partition(Pat,LHS,PatRest),
partition(Rels,RHS,RelsRest),
match(PatRest,RelsRest).

equivalent(Pat,Pat).
equivalent(LHS,RHS) :- eq(LHS,RHS).
equivalent(LHS,RHS) :- eq(RHS,LHS).

The relation partition(Union,Set1,Set2) holds if
Set1 ∪ Set2 = Union, and Set1 and Set2 are disjoint.
The pattern in (2) matches with the set in (1-b) and would,
among others, instantiate the variable Su as mengistu.

4which is part of the High-Performance Computing centre of the
University of Groningen

5The Amsterdam system for CLEF 2004 uses information ex-
tracted from the parsed corpus. The University of Nijmegen has
used it to obtain realistic data for psycholinguistic experiments.

KRAQ'05 - IJCAI workshop - July 30th 2005 16

Equivalences can be defined to account for the fact that in
some cases we want a pattern to match a set dependency re-
lations that slightly differs from it, but nevertheless expresses
the same semantic relation. For instance, the subject of an
active sentence may be expressed as a PP-modifier headed by
door (by) in the passive:

(3) a. Zimbabwe verleende asiel aan Mengistu (Zim-
babwe gave asylum to Mengistu)

b. Aan Mengistu werd asiel verleend door Zim-
babwe (Mengistu was given asylum by Zim-
babwe)

The following equivalence rule accounts for this:

eq({〈Vb/V,su,Su/S〉},

{

〈word/W,vc,Vb/V〉,
〈Vb/V,mod,door/D〉,
〈door/D,obj1,Su/S〉

}

)

Here, the verb word is (the root form of) the passive auxiliary,
which takes a verbal complement headed by the verb Vb.

We have implemented 13 additional equivalence rules, to
account for, among others, coordination, relative clauses,
possessive relations expressed by the verb hebben (to have)
as well as the following phenomena:

(4) a. de bondscoach van Noorwegen, Egil Olsen ⇔
Egil Olsen, de bondscoach van Noorwegen (the
coach of Norway, Egil Olsen ⇔ Egil Olsen, the
coach of Norway)

b. Australië’s staatshoofd ⇔ staatshoofd van Aus-
tralië (Australia’s head of state ⇔ head of state
of Australia)

c. president van Rusland, Jeltsin ⇔ Jeltsin is presi-
dent van Rusland (president of Russia, Jeltsin ⇔
Jeltsin is president of Russia).

d. Moskou heeft 9 miljoen inwoners ⇔ de 9
miljoen inwoners van Moskou (Moskow has 9
million inhabitants ⇔ the 9 million inhabitants
of Moskow).

e. Swissair en Austrian Airlines hebben vluchten
naar Kroatië ⇔ Swissair heeft vluchten naar
Kroatië (Swissair and AA have flights into Croa-
tia ⇔ Swissair has flights into Croatia)

f. Ulbricht liet de Berlijnse Muur bouwen ⇔ Ul-
bricht, die de Berlijnse Muur liet bouwen. (Ull-
bricht had the Berlin Wall be built ⇔ Ullbricht,
who had the Berlin Wall be built)

The equivalence rules we have implemented so far express
linguistic equivalences, and thus are both general adn domain
independent.

Note that both the partition and equivalent rela-
tion in general will have multiple solutions, and thus, back-
tracking may be required in order to determine whether a pat-
tern matches a set of dependency relations. Also note that, at
least for the moment, for efficiency reasons we do not allow
recursive application of equivalence rules. That is, given a so-
lution for equivalent(LHS,RHS), we require that RHS
is a subset of the set of dependency relations Rels, and we
do not try to find an equivalent RHS′ which is part of Rels.

4 Applications in QA
Question analysis. Question analysis is the task
of assigning a specific class (person, location,
date, ...) to a question. Our QA system of-
ten assigns an additional argument to the class, i.e.
location(della alpi stadion) asks for the loca-
tion of the Della Alpi stadium. Question analysis requires a
combination of syntactic analysis and ontological resources.
Syntactic analysis helps to determine the question stem in
complex WH-phrases (with which Palestinian organization...)
and can help to identify additional properties of the ques-
tion (i.e. Give the name of a Japanese city that was struck
by an earthquake asks for the name of city, not of an earth-
quake. Lexical semantic knowledge is required to recognize
that Which region in the US has ... asks for a geographical
named entity, whereas Which car factory was bought by ... as
for a organization named entity.

The advantage of using dependency relations for this task
has been widely recognized. The incorporation of equiv-
alences over dependency relations means that patterns will
automatically cover a certain amount of syntactic variation.
The pattern in (5-a), for instance, ensures that the questions
in (5-b) and (5-d) are both classified as cause(Effect),
with Effect instantiated as rsi, in spite of the fact that
their word order and syntactic structure differs.

(5) a.

{

〈ontsta/O, mod, waardoor/W〉,
〈ontsta/O, su, Effect/E〉

}

b. Waardoor ontstaat RSI? (What causes RSI?)

c.

{

〈waardoor/1, wh, ontsta/2〉,
〈ontsta/2, mod, waardoor/1〉,
〈ontsta/2, su, rsi/3〉

}

d. Waardoor kan RSI ontstaan? (What can cause
RSI?)

e.

〈waardoor/1, wh, kan/2〉,
〈kan/2, su, rsi/3〉,
〈ontsta/4, mod, waardoor/1〉,
〈ontsta/4, su, rsi/3〉

The modifier waardoor is analyzed as a modifier of the
verb ontstaan in both cases, and the dependency analysis also
makes explicit the fact that the subject of the modal verb kan
also functions as subject of the verbal complement. A regular
expression pattern would at least have to deal with the fact
that the subject follows the verb ontstaan in (5-b), whereas it
precedes the verb in (5-d).

Note also that the use of variables for dependents in a pat-
tern allows identification of specific syntactic arguments in
the question. The pattern in (5-a) picks up the subject as the
Effect for which a cause is asked. This information is used
in the answer extraction process.

Off-line answer extraction. Off-line methods have
proven to be very effective in QA ([Fleischman et al., 2003],
[Jijkoun et al., 2004]). Before actual questions are known,
a corpus is exhaustively searched for potential answers
to specific question types (capital, abbreviation,
inhabitants, year of birth, ...). The an-
swers are extracted from the corpus off-line and stored in a
semi-structured table for quick and easy access.

KRAQ'05 - IJCAI workshop - July 30th 2005 17

One of the advantages of having the corpus analyzed in full
is the fact that it opens up the possibility of off-line answer ex-
traction based on dependency relations. [Jijkoun et al., 2004]
have shown for English that using dependency relations for
this task can lead to significant improvements in recall over
systems based on regular expression pattern matching. De-
pendency relations often allow patterns to be stated which are
hard to capture using regular expressions.

The sentences in (6), for instance, all contain information
about organizations and their founders.

(6) a. Minderop richtte de Tros op toen (Minderop
founded the Tros when...)

b. Op last van generaal De Gaulle in Londen richtte
verzetsheld Jean Moulin in mei 1943 de Conseil
National de la Résistance (CNR) op. (Follow-
ing orders of general De Gaulle, resistance hero
Jean Moulin founded in May 1943 the Conseil
National de la Résistance (CNR))

c. Het Algemeen Ouderen Verbond is op 1 de-
cember opgericht door de nu 75-jarige Martin
Batenburg. (The General Pensioners Union was
founded on Dec, 1, by, now 75-year old, Martin
Batenburg.)

d. Kasparov heeft een nieuwe Russische Schaak-
bond opgericht en... (Kasparov has founded a
new Russian Chess Union and...)

e. ... toen de Generale Bank bekend maakte met
de Belgische Post een ”postbank” op te richten.
(when the General Bank announced to found a
“postal bank” with the Belgian Mail).

The verb expressed to relation (oprichten, to found) can take
on a wide variety of forms (active, with the particle op split
from the root, participle, and infintival, either the founder or
the organization can be the first constituent in the sentence, in
passives the founder may be part of a door (by) phrase, and in
control constructions the founder may be found as the subject
of a governing clause. In all cases, modifiers may intervene
between the relevant constituents. Such variation is almost
impossible to capture accurately using regular expressions,
whereas dependency relations can exploit the fact that in all
cases the organization and its founder can be identified as the
object and subject of the verb with the root form oprichten.
The pattern in (7) suffices to extract this relation from all of
the examples above.6

(7)

{

〈richt op/R, su, Founder/S〉,
〈richt op/V, obj1, Founded/O〉

}

Equivalence rules can be used to deal with other forms of
syntactic variation. For instance, once we define a pattern to
extract the country and its capital from (8-a), the equivalence
rules illustrated in (4-a), (4-b), and (4-c) can be used to
match this single pattern against the alternative formulations
in (8-b)- (8-d) as well.

6The fact that the by-phrase in passives acts as the logical subject
of the participle is accounted for by means of an equivalence rule.

(8) a. de hoofdstad van Afghanistan, Kabul (the capital
of Afghanistan, Kabul)

b. Kabul, de hoofdstad van Afghanistan (Kabul, the
capital of Afghanistan)

c. Afghanistans hoofdstad, Kabul (Afghanistan’s
capital, Kabul)

d. Kabul is de hoofdstad van Afghanistan (Kabul is
the capital of Afghanistan)

The table below illustrates the effect of using equivalence
rules when applying the extraction patterns to the full CLEF
corpus:

Table -Equiv +Equiv Incr (%)
tuples uniq tuples uniq tpls uniq

Abbreviation 21.170 8.405 21.497 8.543 1 1
Age 15.981 13.716 22.143 18520 38 35
Born Date 1.545 1.356 2356 1.990 54 47
Born Loc 371 351 937 879 152 150
Capital 1.940 406 2.146 515 10 27
Currency 3.111 124 6.619 222 113 80
Died Age 522 379 1.127 834 116 120
Died Date 374 349 583 544 56 55
Died Loc 364 332 664 583 82 76
Founded 604 559 1.021 953 69 70
Function 54.016 28.543 77.028 46.589 43 63
Inhabitants 529 473 708 633 34 34
Nobel Prize 75 67 169 141 125 110

For all relations, except abbreviations, which are found in
a single syntactic environment, the overall number of ex-
tracted tuples, as well as the number of unique tuples in-
creases considerably. Of course, for each relation,the number
of extracted relations could have been increased by a similar
amount by expanding the number of patterns for that relation.
The interesting point here is that in this case this was achieved
by adding a single, generic component.

The development and maintenance of extraction pat-
terns is further facilitated by the fact that multiple de-
pendency relations may be combined into paths (i.e.
〈City, mod, tellend, me, Inhabitants〉 refers
to the pair 〈City, mod, tellend〉 and 〈tellend,
me, Inhabitants〉), by providing developers with tools
which support visualization of dependency relations as syn-
tactic trees.

Answer reranking and extraction. For those questions
that are not answered by the off-line method (i.e. either be-
cause no table exists for the given question type, or because
no matching table entry was found), the QA system passes
a set of keywords extracted from the question to the IR en-
gine. IR returns a set of relevant paragraphs. Within this set,
we try to identify the sentence which most likely contains the
answer, and we try to extract the answer from the sentence.

For each sentence A, we compute its a-score relative to
the question Q as follows:

a-score(Q, A) = α.d-score(Q, A)
+ β.type-score(Q, A)
+ γ.IR(Q, A)

Here, d-score expresses to what extent the depen-
dency relations of Q and A match, type-score expresses

KRAQ'05 - IJCAI workshop - July 30th 2005 18

whether a constituent matching the question type of Q could
be found (in the right syntactic context) in A, and IR com-
bines the score assigned by the IR engine and a score which
expresses to what extent the proper names, nouns, and ad-
jectives in Q and A plus the sentence immediately preceding
A overlap. α, β and γ are (manually set) weights for these
scores.

The d-score computes to what extent the dependency
structure of question and answer match. To this end, the set
of dependency relations of the question is turned into a pat-
tern Q, by removing the dependency relations for the question
word, and then substituting all string positions by variables.
The d-score is the cardinality of the largest subset Q′ of
Q divided by |Q|, such that match(Q′, A) holds (where A is
the set of dependency relations of the answer):

d-score(Q, A) = |
arg max

Q′ {Q′|Q′ ⊂ Q ∧ match(Q′, A)}|
|Q|

Note that dependency matching is considerably more subtle
than keyword matching. A case in point are Q/A-pairs such
as the following:

(9) a. Wie is voorzitter van het Europese Parlement?
(Who is chair of the European Parliament?

b. Karin Junkers (SPD), lid van het Europese
Parlement en voorzitter van de vereniging
van sociaal-democratische vrouwen in Eu-
ropa...(Karin Junkers (SPD), member of the Eu-
ropean Parliament and chair of the society of
social-democrat women in Europe...)

Here, (9-b) does not contain the correct answer in spite of
the fact that it contains all keywords from the question. In
fact, even most of the dependency relations of the question
are present in the answer, but crucially, there is no substitution
for W that would satisfy:

match(

{

〈voorzitter/V,mod,van/W〉,
〈van/W,obj1,parlement/X〉

}

, Q)

The type-score indicates whether a suitable answer type
was found in the sentence (i.e. a date question requires
an answer containing a dependent with Part-of-Speech tag
noun(date)). Higher scores are assigned to potential an-
swers where the phrase that matches the question type is
also in some syntactic dependency relation to the topic of
the question. I.e. given the question in (10-a), classified
as date(hereniging), the date phrase in oktober 1990
in (10-b) receives a higher score than the date phrase in 1962
in (10-c), as the first is a dependent of hereniging, whereas
the second is not.

(10) a. Wanneer vond de Duitse hereniging plaats?
(When did the German unification take place?)

b. Sinds de Duitse hereniging in oktober 1990...
(Since the German unification in October
1990...)

c. Al in 1962 voorspelde hij de Duitse hereniging.
(As early as 1962 he predicted the German uni-
fication.)

Merging off-line and IR-based techniques. One of the ad-
vantages of our approach is that the technology used for off-
line and IR-based answer extraction becomes virtually iden-
tical. The only real difference is that the latter relies on IR to
make a first selection of relevant paragraphs, whereas the off-
line method performs an exhaustive search. Consequently,
the metric used for selecting the best answer from a list of
results provided by IR can be used for reranking the results
of table look-up as well. Cases where this is useful, are ques-
tions like (11-a) and (11-b):

(11) a. Wie is de Duitse minister van Economische Za-
ken? (Who is the German minister of Econ-
omy?)

b. Wie was president van de VS in de Tweede
Wereldoorlog? (Who was president of the US
during the second World War?)

These are hard to account for by off-line meth-
ods. Question (11-a) and (11-b) would be clas-
sified as function(minister,duits) and
function(president,vs), respectively, by ques-
tion analysis, and thus, in principle can be answered by
consulting the functions-table. However, this ignores the
modifiers van Economische Zaken and in de Tweede Werel-
doorlog, which, in this case, are crucial for finding the correct
answer.

Applying the same scoring technique to facts extracted
from the table, as to on-line extracted facts, can help to
overcome this problem. In particular, the d-score be-
tween the question and the sentence on which a table en-
try is based, can be used as an additional factor (in con-
junction with frequency) in determining whether a table an-
swer is correct. For instance, for question (11-a) classified as
function(minister,duits), there are several candi-
date answers, some of which are:

Answer Freq Answer Freq
Klaus Kinkel 54 Volker Rühe 15
Theo Waigel 36 Günter Rexrodt 11

In this case, using frequency only to determine the correct
answer, would give the wrong result, whereas a score that
combines frequency and d-score (based on (12), on which
one of the table entries was based) returns the correct answer.

(12) De Duitse minister van economische zaken, Günter
Rexrodt, verwelkomde het rapport. (The German
minister of economy, Günter Rexrodt, welcomed the
report.)

5 Evaluation

We evaluated on 572 questions that were used in the Dutch
monolingual task of the CLEF 2003 and 2004 QA track. We
give the mean reciprocal rank (mrr) over the first 5 answers
found by the system. The off-line column contains the results
for questions answered by table look-up. The on-line column
contains the score for the remaining questions, and the third
column reports the overall score.

KRAQ'05 - IJCAI workshop - July 30th 2005 19

CLEF 03 off-line on-line total
q mrr # q mrr # q mrr

baseline 85 0.71 287 0.36 372 0.44
+d-score 85 0.71 287 0.40 372 0.47

+equiv 89 0.77 283 0.40 372 0.49

CLEF 04 off-line on-line total
q mrr # q mrr # q mrr

baseline 61 0.56 139 0.42 200 0.46
+d-score 61 0.57 139 0.45 200 0.48

+equiv 71 0.73 129 0.49 200 0.58

The baseline is a system which does not use d-score to
rerank answers, and which does not use equivalences over
dependency relations. It should be noted, however, that the
baseline still makes use of dependency relations for question
analysis and answer extraction. Adding d-score as a factor
in reranking answers improves performance. Adding equiv-
alences has a positive effect on the performance of the off-
line method in particular. Since more tuples are extracted,
the number of questions that can be answered by the off-line
method increases. In addition, the accuracy of the overall
system improves. The difference between the baseline sys-
tem and the system using both d-score and equivalences is
statistically significant (with 95% confidence) in both evalu-
ations according to the paired t-test.

6 Conclusions and Future Work
We have shown that in-depth syntactic analysis in combina-
tion with a generic method for matching patterns against de-
pendency relations and dealing with syntactic variation can be
used to improve the performance of various components of a
QA system. An advantage of this approach is that it opens up
the possibility of using similar techniques for off-line and IR-
based question answering. In future work, we would like to
explore the possibility of integrating equivalence rules based
on lexical equivalence (i.e. synonyms, term variants, and
paraphrases acquired using the technique described in [Lin
and Pantel, 2001]) and coreference.

References
[Attardi et al., 2002] Giuseppe Attardi, Antonio Cisternino,

Francesco Formica, Maria Simi, and Alessandro Tommasi.
Piqasso: Pisa question answering system. In Text RE-
trieval Conference (TREC) 2001 Proceedings, pages 633–
642, Gaithersburg, ML, 2002.

[Briscoe and Carroll, 2002] Ted Briscoe and John Carroll.
Robust accurate statistical annotation of general text. In
Proceedings the third international conference on Lan-
guage Resources and Evaluation (LREC 2002), pages
1499–1504, Gran Canaria, 2002.

[Clark and Curran, 2004] Stephen Clark and James R. Cur-
ran. Parsing the wsj using ccg and log-linear models. In
Proceedings of the 42nd Annual Meeting of the Associa-
tion for Computational Linguistics (ACL ’04), Barcelona,
Spain, 2004.

[Collins, 1999] Michael Collins. Head-driven Statistical
Models for Natural Language Processing. PhD thesis,
University of Pennsylvania, 1999.

[Fleischman et al., 2003] Michael Fleischman, Eduard
Hovy, and Abdessamad Echihabi. Offline strategies for
online question answering: Answering questions before
they are asked. In Proc. 41st Annual Meeting of the
Association for Computational Linguistics, pages 1–7,
Sapporo, Japan, 2003.

[Jijkoun et al., 2004] Valentin Jijkoun, Jori Mur, and
Maarten de Rijke. Information extraction for question
answering: Improving recall through syntactic patterns.
In Coling 2004, pages 1284–1290, Geneva, 2004.

[Katz and Lin, 2003] Boris Katz and Jimmy Lin. Selectively
using relations to improve precision in question answer-
ing. In Proceedings of the workshop on Natural Language
Processing for Question Answering (EACL 2003), pages
43–50, Budapest, 2003. EACL.

[Lin and Pantel, 2001] Dekan Lin and Patrick Pantel. Dis-
covery of inference rules for question answering. Natural
Language Engineering, 7:343–360, 2001.

[Lin, 1994] Dekan Lin. Principar—an efficient, broad-
coverage, principle-based parser. in proceedings of coling-
94. In Proceedings of COLING-94, pages pp.42–48, Ky-
oto, Japan., 1994.

[Litkowski, 2004] Kenneth C. Litkowski. Use of metadata
for question answering and novelty tasks. In E. M.
Voorhees and L. P. Buckland, editors, Proceedings of the
eleventh Text Retrieval Conference (TREC 2003), pages
161–170, Gaithersburg, MD, 2004.

[Malouf and van Noord, 2004] Robert Malouf and Gertjan
van Noord. Wide coverage parsing with stochastic at-
tribute value grammars. In IJCNLP-04 Workshop Beyond
Shallow Analyses - Formalisms and statistical modeling
for deep analyses, Hainan, 2004.

[Mollá and Gardiner, 2005] D. Mollá and M. Gardiner. An-
swerfinder - question answering by combining lexical,
syntactic and semantic information. In Australasian Lan-
guage Technology Workshop (ALTW) 2004, Sydney, 2005.

[Pollard and Sag, 1994] Carl Pollard and Ivan Sag. Head-
driven Phrase Structure Grammar. Center for the Study
of Language and Information Stanford, 1994.

[Punyakanok et al., 2004] V. Punyakanok, D. Roth, and
W. Yih. Mapping dependency trees: An application to
question answering. In The 8th International Symposium
on Artificial Intelligence and Mathematics (AI&Math 04),
Fort Lauderdale, FL, 2004.

[Rinaldi et al., 2003] Fabio Rinaldi, James Dowdall, Kaarel
Kaljurand, Micahel Hess, and Diego Mollá. Expliot-
ing paraphrases in a question answering system. In The
Second International Workshop on Paraphrasing: Para-
phrase Acquisition and Applications, pages 25–32, Sap-
poro, Japan, 2003.

[van Noord, 2004] Gertjan van Noord. Error mining for
wide-coverage grammar engineering. In Proceedings of
the ACL 2004, Barcelona, 2004.

KRAQ'05 - IJCAI workshop - July 30th 2005 20

Towards Answering Procedural Questions

Farida Aouladomar
IRIT

118 route de Narbonne
31062 Toulouse Cedex France

aouladom@irit.fr

Abstract

In this paper, we first present an analysis of pro-
cedural question structure. Next, we investigate
the structure of procedural texts and of the relevant
rhetorical relations of interest for answering ques-
tions. We then show how, from a linguistic point of
view, questions and procedural text fragments can
match in order to produce responses.

1 Introduction
Procedural questions, sometimes called ’How-questions’, are
questions whose induced response is typically a fragment,
more or less large, of a procedure, i.e., a set of coher-
ent instructions designed to reach a goal. Procedural ques-
tions form a large subset of questions typically introduced
by ’How’. Recent statistics elaborated from queries to Web
search engines show that procedural questions is the sec-
ond largest set of queries after factoid questions (de Rijke,
2005). This is confirmed by another detailed study carried
out by (Yin, 2004). Procedural question-answering systems
are of much interest both to the large-public via the Web, and
to more technical staff, for example to query large textual
databases dedicated to various types of procedures.

Procedural texts explain how to execute procedures. In
our perspective, procedural texts range from apparently sim-
ple cooking receipes to large maintenance manuals (whose
paper versions are measured in tons e.g. for aircraft main-
tenance). They also include documents as diverse as teach-
ing texts, medical notices, social behavior recommendations,
directions for use, assembly notices, do-it-yourself notices,
itinerary guides, advice texts, savoir-faire guides etc. Pro-
cedural texts adhere more or less to a number of structural
criteria, which may depend on the author’s writing abilities
and on traditions associated with a given domain. For ex-
ample, (Schwitter et al., 2004) show that procedural knowl-
edge in technical documents obeys in general to strict style
guidelines. Typographical conventions such as the use of hy-
phens, bullets or other forms of numbering in front of each
of the enumerated instructions are often imposed to writers
via e.g. style files. The same is observed for a number of
editing recommendations: language level, size of sentences,
pronominal references, etc. There are also prototypical struc-
tures that depend on the domain (e.g. cooking receipes), but

these are sometimes more conceptual than stylistic. In fact
authors are not necessarily professionals: they may just be
basic Web users that post their favorite cooking receipes.

Procedural texts explain how to realize a certain goal by
means of actions which are at least partially temporally or-
ganized. Procedural texts can indeed be a simple, ordered
list of instructions to reach a goal, but they can also be less
linear, outlining different ways to realize something, with ar-
guments, advices, conditions, hypothesis, preferences. They
also often contain a number of recommendations, warnings,
and comments of various sorts. The organization of a pro-
cedural text is in general made visible by means of linguis-
tic and typographic marks. Another feature is that procedu-
ral texts tend to minimize the distance between language and
action. Plans to realize a goal are made as immediate and
explicit as necessary, the objective being to reduce the infer-
ences that the user will have to make before acting. Texts are
thus oriented towards action, they therefore combine instruc-
tions with icons, images, graphics, summaries, preventions,
advices, etc.

Research on procedural texts was initiated by works in psy-
chology, cognitive ergonomics, and didactics. Several facets,
such as temporal and the argumentative structures have then
been subject to general purpose investigations in linguistics,
but they need to be customized to this type of text. There is
however very little work done in Computational Linguistics
circles.

Our work is primarily based on French. The typical French
interrogative pronoun for procedural questions is Comment ?.
This pronoun has a slightly narrower set of uses than How in
English or Wie in German, it corresponds quite well to the
Spanish Cómo. In a first stage, corpora observations are also
mainly based on French, but we keep an eye on realizations in
other languages. While most of the structures we have elabo-
rated are aimed at being language independent, it is clear that
each language has its own set of linguistic marks and possi-
bly style for procedural texts. For example, (Delin et al, 94)
identified different grammatical forms representing and ex-
pressing enablement and generation relations in French, En-
glish and Portuguese procedural texts, used to implement a
system for generating multilingual instructions drafts for soft-
ware use or for carrying out administrative procedures.

From a methodological point of view, our approach is
based on (1) a conceptual and pragmatic analysis of the no-

KRAQ'05 - IJCAI workshop - July 30th 2005 21

tion of procedure and (2) a mainly manual corpus-based anal-
ysis, whose aim is to validate and enrich the former. Pro-
cedural texts being quite complex, we feel that a symbolic
perspective is appropriate to integrate corpus analysis as well
as more abstract considerations (e.g. the temporal structure of
instructions, the argumentative dimension, conditionals, etc.).

In this paper, we first briefly survey previous works on
procedural texts and question answering. Then we propose
a general typology of procedural questions in section 3. In
section 4, we develop an analysis of procedural texts, from
the point of view of their discursive structure and the rhetori-
cal relations that hold between discursive elements. In sec-
tion 5, We show and evaluate the adequacy of this analy-
sis for answering How-questions. For that purpose, we in-
troduce different notions, among which the notion of the
questionability of a text, i.e. its ability to be used to an-
swer How-questions. Finally, in section 6, we sketch out a
few procedures to retrieve relevant sets of instructions from
How-questions .

2 State of the art
Procedural texts have been studied in psycholinguistic, lin-
guistics and didactic circles. We briefly survey various ap-
proaches here, outlining elements of interest for our objec-
tives.

2.1 General typology
Under the heading of procedural texts, there is a quite large
diversity of texts. (Adam, 2001) notes the variability of
judgements in procedural text categorization, depending on
the text main objectives and style. We have, for example:

• regulatory texts (Mortara et al., 1988) that characterize
expected behaviours,

• procedural texts (Longacre, 1982) defined as rather lin-
ear sets of instructions,

• ’programmatory’ texts which include receipes, musical
scores and architectory plans. (Greimas, 1983) identifies
how knowledge from an expert is transfered via these
texts to users who are expected to follow strictly the in-
structions given,

• instructional-prescriptive texts (Werlich, 1975), where a
quite detailed analysis of temporal and event structures
is carried out,

• injunctive texts, where (Adam, 1987) shows the form
and style used in short notices for, e.g., fire instructions,
security measures, etc.,

• advice texts (Luger, 1995), which include advice texts of
various sorts, such as those found in large public maga-
zines.

• receipe texts (Qamar, 1996), which is a domain quite
well-studied, for example in language generation.

All these forms share common structures: specification of
goals, description of lists of pre-requisites to reach goal, and
description of sequences of instructions. They also share
common stylistic forms, e.g. preferences for imperative

forms, and a number of typographic elements such as enu-
merations.

From the analysis, mainly psychological or cognitive, of
the different forms of procedural texts mentioned above, we
classify them into three main categories, which will be con-
sidered in our project:

• Procedures, e.g.: receipes, maintenance and construc-
tion manuals, some medical texts, didactic texts, etc.

• Injunctions, e.g.: orders, regulations, game rules, secu-
rity measures, etc.

• Advices, e.g.: beauty advices, ways : to fill in forms, to
behave in certain environments, or to manage a meeting,
etc.

2.2 Related works

Two works will be used as the starting point of the develop-
ment of the discursive structure of procedural texts that we
have elaborated, with in view to respond to How-questions.
(Bieger et al., 1984-85) propose a taxonomy of the contents
of instructions in 9 points: inventory (objects and concepts
used), description (of objects and concepts), operational (in-
formation that suggest the agent how to realize an action),
spatial (spatial data about the actions), contextual, covariance
(of actions, which evolve in conjunction), temporal, qualifica-
tive (manners, limits of an information), emphatic (redirects
attention to another action).

One of the main works in Computational Linguistics is due
to (Kosseim, 1996). She isolated 9 main structures or opera-
tions, called semantic elements from corpus analysis:

1. sequential operations: a necessary action that the agent
must realize,

2. object attribute: description meant to help understand
the action to realize,

3. material conditions: environment in which an action
must be carried out,

4. effects: consequences of the realization of a group of
operations on the world,

5. influences: explain why and how and operation must be
realized,

6. co-temporal operations: express operation synchroniza-
tion,

7. options: optional operations,

8. preventions: describe actions to be avoided,

9. possible operations: possible operations to do in the fu-
ture.

In a different range of ideas, and applied to Japanese,
(Takechi and al., 2003), show that it is possible to isolate ef-
fective features used to categorize lists of Web pages as being
procedural or not, in a QA perspective. They show that tech-
niques other than in standard text categorization need to be
developed. List of procedural expressions in the computer
domain have been extracted with a quite high accuracy.

KRAQ'05 - IJCAI workshop - July 30th 2005 22

3 A typology of How-Questions
Let us now investigate the structure of procedural questions.
Besides an introspective analysis, the work reported below is
largely based on corpora studies. We considered in particu-
lar FAQ which abound in procedural questions, questions in
the TREC and AnswerBus frameworks, and quite compre-
hensive inventories built from queries submitted to search en-
gines over the past month(s) composed of keywords, found at:
http://inventory.overture.com/d/searchinventory/suggestion/?
mkt=fr. We constructed our procedural question corpora from
different domains : health, education, tourism, social behav-
ior (savoir-faire and others), computer sciences, maintenance
domain.

In this section we first identify the nature of procedural
questions, since they cannot just be identified by the inter-
rogative pronoun how that introduces them, we then briefly
present useful aspects of the syntactic structure of these ques-
tions followed by a semantic categorization of procedural
questions, depending on the main verb of the query. We end
the section with a semantic representation proposal, which
will be the entry point of the response retrieval and construc-
tion procedure.

3.1 What is a procedural question ?
A large number of procedural questions are introduced by
the interrogative pronoun Comment in French (How in En-
glish, Wie in German, Cómo in Spanish, etc.). However,
Comment, similarly to How, has several uses which are not
all related to procedural questions. Let us review them below
in order to introduce a first set of restrictions in our analysis:

• The boolean How: as in How are you, Cómo estas ? and
Comment vas tu? is not a procedural use. In the same
range of ideas we have the evaluative How in Germanic
languages: How expensive is this?, wie teuer ist das?.

• The nominal How: often included in a structure such
as Comment + identification verb, as in: comment
surnomme-t-on le Mississippi?, comment dit-on maison
en espagnol ? (gloss: what is the other name for the
Mississippi river? How do you say ’house’ in Spanish?).
This class does not characterize procedural questions, it
is a kind of factoid question.

• The causality How: used to know the causes or the cir-
cumstances of a certain event: How did John died?, this
use does not characterize a priori procedural questions
when the response is just an NP. However, if elaborated,
it can be viewed as being indirectly related to a kind of
procedure, but we are closer here to narration than to
procedural information.

• The instrumental or manner How: is used to learn about
means or instruments as in How is couscous eaten in
Morocco?, response: by hand. Once again, a procedural
answer can be given to explain how to use fingers.

• The choice list How, responds to questions such as: How
can I pay my air ticket?. The expected response is in
general a list of choices: credit card, cash, etc. But it
can also be associated with procedural elements: cheque
with a piece of ID for amounts less than 100 Euros.

• The instructional How: which fully corresponds to pro-
cedural responses, characterized by an organized set of
instructions designed to reach a goal: how to change my
car wheel?.

Only the last type of How questions in this analysis is typ-
ical of procedural How questions. The instrumental, manner
and choice list ’How-questions’ may also contain some forms
of procedures.

Procedural questions are often introduced by How, but
there are several other forms that we survey below:

• Forms in ’Que + Faire’ (gloss: what to do to...), as in
what should I do to get a visa for India ? or forms with
’Quel + ETRE + proposition’ (which/what + BE + prop)
as in what are the steps to follow to get a visa for India? .
We sometimes find directly constructions using the noun
procedure to express procedural queries as in What is the
procedure for disconnecting my external hard drive?.

• Elliptical use of How: abound in cases where just two or
three keywords are used instead of a full, well-formed,
natural language sentence: changing wheel, add RAM,
get boy-friend, assemble computer. The verb or the de-
verbal used in the query allows for the identification of
the type of question. More complex elliptical forms en-
countered in our corpora include e.g. the need of infer-
ence to identify a goal from a problematic situation as in:
PC down which must be reformulated as how to repair
my PC?

• questions in is it possible to, can I, etc. + VP, as in is it
possible to create a directory in Php ?, have a direct re-
sponse which is a priori just yes or no, but, in the case of
a cooperative response, which is our perspective, the re-
sponse is often a set of instructions, answering the ques-
tion viewed as a goal to reach.

In our system, query processing is based on the
QRISTAL system (developed by Synapse Toulouse:
http://www.qristal.fr), which is not perfect, but which allows
us to get the distinctions presented above and to construct an
adequate representation.

3.2 A conceptual categorization of procedural
questions

Let us now introduce a simple conceptual categorization for
procedural questions. The four categories presented below
cover about 90% of the cases found in our corpora. They
correspond to different types of procedural texts. Our analysis
is based on the main predicate (often a verb or a deverbal) in
the query. It has been carried out with the use of the TROPES
system (available at www.acetic.fr).

To have an analysis which is simple and easy to adapt to
other languages, we have considered basic verb categories,
as developed in WordNet (Fellbaum, 1998), and adapted to
French in (Saint-Dizier, 1998). The categories considered are
the following:

• action: this category is characterized by verbs of change,
of creation and destruction, and maintenance, i.e. verbs
such as e.g.: construct, revise, mount, dismount, assem-
ble, repair, change, etc. In general, corresponding proce-

KRAQ'05 - IJCAI workshop - July 30th 2005 23

dural texts include receipes, do-it-yourself guides, main-
tenance manuals, construction manuals, etc.

• communication: this class is characterized by verbs of
social interactions and, possibly, some psychological
verbs: contact, convince, please, negotiate, manage,
etc., as in how to manage a meeting ?. Corresponding
procedural texts include: practical advice notes, savoir-
vivre, horoscopes, management guides, etc.

• knowledge acquisition: this class is characterized
mainly by verbs of the cognition family and verbs that
express forms of transfer of knowledge, such as: know,
learn, resolve, improve, etc. Corresponding procedural
texts include didactic texts, encyclopedia, etc.

• itinerary: this latter class is characterized by verbs of
movement, among which: go, reach, access, etc. as in
How can I go to Toulouse Blagnac airport ?.

3.3 Representing procedural questions
To represent procedural questions, given our cooperative an-
swering framework (Benamara et al. 2004), we use a notation
which is close to the form adopted in WebCoop, with the dif-
ference that the body of the query is not translated into first-
order logic a priori, since this is not really useful at this stage
for answering procedural questions. Furthermore, in our first
set of experimentations, we only consider short procedural
questions, i.e. questions essentially with one predicate. Our
first objective is not to develop an analysis of complex proce-
dural questions, which involve, for example, hypothesis, con-
ditionals, but, rather, to study response retrieval and response
generation.

The general representation format is the following:
question(procedural(type), focus,
constraints).
where type is one of the four types presented in the section
just above, focus is in general the VP: the predicate and
its arguments, which does characterize the goal itself, and
constraints is composed of restrictions which are
realized as predicate adjuncts. This latter set may be empty.
Focus and constraints are represented as parts of speech
tagged words, using the TreeTagger (Schmid, Stuttgart
University). To this tagging we add, when possible, the
semantic type of the nouns so that the response search can
be made more flexible (see section 5). Semantic typing is
always a delicate task. We mainly consider here simple
ontologies, such as those now available under Google.

As an example, the question: how to reserve a flight on the
Web? is represented as follows, simplifying the annotation
format: question(procedural(action),
[reserve(verb, morpho), flight(noun,
transportation)],
[on(prep,means), web(noun, communication)]).

4 An analysis of the structure of procedural
texts

In this section, we introduce our analysis of the discursive
and rhetorical structures of procedural texts, with the view (in
terms of topics and granularity) of answering how-questions.

Our analysis is based on the previous classifications pre-
sented in section 2. We feel however that these classifica-
tions are a little bit too vague or with a too heavy pragmatic
perspective to be used directly to accurately respond to How-
questions. There are also a few confusions between structural
elements and rhetorical functions.

4.1 A Discursive analysis of procedural texts

Here is, represented by means of a grammar, the structure we
have elaborated for procedural texts. The structures reported
below correspond essentially to the organization of the in-
formational contents. Elements concerning the layout (e.g.
textual organizers such as: titles, enumerations, etc.), and lin-
guistic marks of various sorts are used as triggers or delim-
iters to implement this grammar.

In what follows, parentheses express optionality, + it-
eration, / is an or, the comma is just a separator with no
temporal connotation a priori, and the operator < indicates
a preferred precedence (i.e. the elements usually appear
following the elements order given in the grammar nodes).
Each symbol corresponds to an XML-tag, allowing us to
annotate procedural texts,.

The top node is termed objective:
objective → title, (summary), (warning), (pre-

requisites), (picture)+ < instruction sequences.

summary → title+. Summary describes the global
organisation of the procedure, it may be useful when pro-
cedures are complex (summary can be a set of hyper-links,
often pointing to titles).

warning → text , (picture)+, (pre-requisites).
Warnings represent global precautions or preventions asso-
ciated with actions or objectives(e.g. switch off electricity
prior to any action): they may have a complex rhetorical and
modal structure, and should be studied in more depth. At the
moment, we consider a warning just as a text, which sounds
sufficient in most question-answering (QA) situations. Warn-
ings are in fact of interest for answering Why? questions.

pre-requisites → list of objects, instruction se-
quences. Pre-requisites describe all kinds of equipments
needed to realize the action (e.g. the different constituents of
a receipe) and preparatory actions.

picture describes a sequence of charts and/or schemas
of various sorts. They often interact with instructions by
e.g. making them more clear. Analyzing this phenomena is
outside the scope of this paper.

Instruction sequences is structured as follows:
instruction sequences → instseq < discursive con-

nectors < instruction sequences / instseq.

instseq is then of one of four main types below:
instseq → (goal), imperative linear sequence / (goal),

optional sequence / (goal), alternative sequence / (goal),

KRAQ'05 - IJCAI workshop - July 30th 2005 24

imperative co-temporal sequence.

Each type of instruction sequence is defined as follows:
imperative linear sequence → instruction < (tem-

poral mark), imperative linear sequence/ instruction.
(e.g. cook peeled potatoes and reduce them out of mashed
potatoes) An imperative linear sequence is the kind of most
common instruction sequence in procedural texts. It can be
composed of one or several instructions.

optional sequence → conditional expression, imper-
ative linear sequence. (e.g. if you prefer a stronger flavor,
add curry powder and cream.)

alternative sequence → (conditional expression),
imperative linear sequence, (alternative-opposition mark)
< instseq / (conditional expression, instseq)+. (e.g. peel
potatoes, or leave the peel on if it is thin).

imperative co-temporal sequence → imperative
linear sequence < co-temporal mark < imperative
co-temporal sequence / instruction.
A co-temporal sequence relates instructions which must be
realized at the same time, or more generally non-sequentially
(e.g. mash tomatoes while mixing with garlic and olive oil)

Finally, Instruction is the lowest level and has the follow-
ing structure, with recursion on objective:

instruction → (iterative expression), action, (goal)+,
(reference)+, (manner)+, (motivation), (limit), (picture)+,
(warning) / objective.
Instructions can be complex since they may contain their own
goals, warnings and pictures. If an instruction is complex it
is analyzed as an objective.

At this level, it is most important to note reference phenom-
ena of various sorts, pointing to already described instruc-
tions, to instructions to be described later (e.g. see ”prepara-
tion” instructions for ...), or to external data via hyper-links.
Let us also note that we have observed almost no restatements
(other ways to describe an instruction if it is difficult to un-
derstand) and no summaries synthesising instructions (not to
be confused with the generic summary of an objective, which
is a kind of table of contents).

As an illustration, the following text, which contains em-
bedded conditions, is analysed as an alternative sequence:
Ne prenez aucun antibiotique pour une appendicite. si vous
souffrez d’une appendicite avec rupture de l’appendice, vous
prendrez de l’Augmentin 150 mg / kg / jour en 3 prises pen-
dant 2 jours. Si vous tes en plus allergique, vous prendrez
la place du Flagyl 0.5g / 8 heures et de la Gentalicine 5mg /
kg / jour pendant 2 jours. See the annotation of the english
translation of this exemple below.

4.2 Rhetorical structures

Rhetorical structures play several roles in our approach. They
first give a semantics to the discursive structure syntax given
above. They also contribute to enhancing the production of

Figure 1: An example of an annotated alternative sequence

well-designed responses (Kosseim, 1995). They are also use-
ful, as shall be seen below, to allow for the integration of
procedural texts dealing with similar objectives or goals, but
this is an extremely difficult task. Finally, they are used to
answer questions with a higher accuracy by clearly identify-
ing e.g. instruments (for the instrumental how), risks (via the
warnings) and equipment needed (via the prerequisites).

The RST (Mann et al., 1988) is a descriptive theory that
specifies 23 possible relations showing how two portions of a
text are linked. Previous work on procedural texts (Kosseim,
1995) (Vander Linden, 1993) (Rosner et al., 1992) used lim-
ited RST relations and suggested additional relations that fit
procedural texts, which we use for our own analysis (limit,
alternative, concurrence). We identified 17 relations from our
corpora analysis, among which we introduced five new re-
lations: reference, prevention, pre-requisite, option and co-
occurrence. Here are the relations we use, with their defini-
tions, possibly slightly altered from their original use:

• Sequence: is a multinucleic relations where Nucleuses
are linked up by a succesion relation (Disconnect the
grinder, install the Standard Abrasives Quick Connect,
2-in. holder pad into the chuck and tighten the nut).

• Result: specifies that an action cannot start before a de-

KRAQ'05 - IJCAI workshop - July 30th 2005 25

sired result from a previous action is reached (once all
the screw and the plugs positionned, assemble the pre-
fabricated sections).

• Purpose: occurs between a goal and the action meant to
reach it (clean the inside surfaces of the engine block to
improve oil return).

• Evaluation: is a little different from the purpose and the
result relations because it is possible to evaluate whether
the action was made correctly or not (keep stirring in
order to get an unctuous cream).

• Limit: links up an action with a satellite representing
a breakpoint (reduce the sauce by stirring it until the
liquid disappear).

• Alternative: links 2 alternative actions, the choice can
depend on the subject will or on the situation itself (if it is
screwed in place, remove the screws with a screwdriver,
or If the panel hangs on hooks, pull the panel out and
swing it up to remove it from the hooks).

• Means: the nucleus (the action itself) is linked with the
segments presenting manners of doing an action or in-
struments needed to realize the action (you must reduce
the air grinder’s speed by using the regulator).

• Reference: holds between an action and a segment
which provides its procedure localization, in the text or
in related texts via hyperlinks (remove the reductor (see
page 18)).

• Prerequisites: occur between an action or an objective
and a list of instruments or a set of actions without which
the action or the objective cannot be realized (changing
a car wheel : to change a wheel is not difficult, with
the proviso of having in one’s car the good tools : wheel
brace, jack, clean rag, torch (if dark), warning triangle).

• Option: is considered when an action depends on the
realization of a conditional situation. Notice that this re-
lation can also link two sequential actions, where one is
compulsory and the other depends on the subject will or
on the situation (steam the fish for 10 minutes and pass
it 5 minutes in the oven if you want it to turn golden).

• Prevention: is usually a relation between an action and
its warnings. Satellites include expressions such as: be
careful not to ..., and ’don’t’ expressions (cut the wood
planks, don’t draw any line!).

• Condition: appears when the action results from the oc-
currence of a conditioning situation (if you can’t do it by
yoursefl, ask the joiner to cut the frames).

• Co-occurence: is the word we use for Vander Linden’s
concurrence relation: where nuclei are linked by a co-
temporal relation (simultaneously to baking the meat,
prepare the vegetables).

• Concurrence: occurs between two rivals co-temporal
actions (to choose the best computer, run the program A
on Mac, at the same time run the program B on PC. If
Mac detects the component before the PC, then use Mac,
otherwise use PC).

• Motivation: occurs when the information given in the
satellite intends to increase the readers desire to perform
the action. Enablements are also part of this category
(you’ve almost come to the end, now you only have to
wait till the flowerings).

The following chart summarizes, for the rhetorical rela-
tions we use, the elements in our grammar which are in-
volved.

Rhetorical kernel-sattelite
relations or multi-kernel pairs
Sequence Instruction-imperative linear sequence

Instruction sequence - instseq
Result Goal-imperative linear sequence

Goal-optional sequence
Goal-alternative sequence
Goal-imperative co-temporal sequence
Instruction-imperative linear sequence
Goal-action

Purpose Imperative linear sequence - goal
Optional sequence - goal
Alternative sequence- goal
Imperative co-temporal sequence - goal
Action - goal-

Evaluation Goal-imperative linear sequence
Goal-optional sequence
Goal-alternative sequence
Goal-imperative co-temporal sequence
Goal-action

Limit Action - limit
Alternative Imperative linear sequenc - instruction sequence

Instruction sequence - instseq
Means Action - manner
Reference Action - reference
Prerequisites Title-prerequisites
Option Optional expression-imperative linear sequence

Instruction sequence - instseq
Prevention Title-warning

Action - warning
Condition Imperative linear sequence -

optional expression
Imperative linear sequence -
conditional expression
Instruction sequence - instseq

Concurrence Imperative linear sequence -
imperative co-temporal sequence

Co-occurrence Imperative linear sequence -
imperative co-temporal sequence

Motivation Action - motivation

4.3 Linguistic marks

In this section, we briefly present the different types of marks
that allow for the identification of the different elements pre-
sented in the grammar above. Besides conventional tempo-
ral, causal, conditional or argumentative marks, whose nature
and scope are not always easy to interpret, procedural texts
are particularly rich in easy to interpret typographic marks.
This is particularly the case for those texts which are well-
written, i.e. those we are interested in to construct responses.

KRAQ'05 - IJCAI workshop - July 30th 2005 26

Besides marks, we also present the main marks used to de-
fine the boundaries of each instruction or set of instructions.
It is important to note that these texts originate from the Web.
They have therefore a form proper to html coding, with some
predefined know-how norms that most authors tend to use.

Discursive marks
Temporal marks include all the ’classical’ marks in terms
of precedence, overlap, inclusion, parallelism, etc. (Allen,
1984). They are mainly realized by means of adverbs, prepo-
sitions, conjunctions, aspectual verbs and propositions de-
scribing the realization of an event (Once the four screws
properly positioned, then assemble...). We use the system de-
velopped by (Muller et al., 2004) to annotate temporal marks.

Causal marks are particularly rich and diverse. They are
used to relate a goal to a set of instructions, or to specify
within an instruction its aim; causal marks are also used to
identify objectives, warnings and various forms of preven-
tion, consequences and some forms of conclusions. They are
mainly realized by means of causal verbs, prepositions and
conjunctions. This is investigated in more depth in (Aoulado-
mar et al., 2005), where a typology of natural arguments and
their structure is presented for the different facets of procedu-
ral texts.

Besides temporal and causal connectors, we have identified
five other types of connectors:

• restrictions and concessives: assemble all the items ex-
cept for the blue ones,

• conditions, hypotheses: if you do not wish to cut the
frames yourself, ask....,

• alternatives: you can either use a hammer, or just push...,

• consequences and conclusions: paste the shelf so that it
fits ...,

• comparison or similitude: use your pencil as a com-
pass....

These marks have been studied in various linguistic and con-
ceptual frameworks. Marks proper to these connectors are
often prepositions or semantically closely related to the se-
mantic typology specific of prepositions. To identify and in-
terpret them, we use the PrepNet framework (Saint-Dizier,
2005) (www.irit.fr/recherches/ILPL/prepnet.html).

Marks for instruction localization
Typographic criterion: the next point is to isolate basic

instructions, called ’instructions’ in the above grammar, and
within these instructions the ’action’ itself. The problem is
essentially to identify simple marks which are delimiters of
the beginning and the end of an instruction. Inter-instruction
marks organize instructions. They are in general quite simple
to identify in procedural texts (Takeshi et al, 2004). The be-
ginning of an instruction is often the start of a sentence which
can be introduced by various typographic marks proper to
enumerations (intended lines, bullets etc.) (Luc et al, 1999).
These correspond also in general to an instruction. The end
of an instruction is either a punctuation mark, usually the
dot, sometimes the semicolon or the comma, or typographic

marks introducing the next instruction. The array below sum-
marizes our observations on the use of layout to easily iden-
tify the instructions within a procedural text.

fig. 1 - (1) percentage of instructions or set of instructions
introduced by typographic marks such as hyphens, bullets and
other numbering forms, line breaks. (2) number of instruc-
tions considered in our sample.

Domains (1) (2)
maintenance, assembly 78% 279

receipes 89% 151
communication 63% 206

average 77% 636

Semantic criterion: within an instruction, the action
is in general organized around the action verb and its argu-
ments. Goals, references, manners, limits, are all adjuncts
which appear in various orders. Goals contain specific verbs
while manners are often nominal. Using the same corpora
as above, we have the following verb distribution. It is
elaborated with the TROPES software.

fig. 2 - (1) factive verb, (2) stative verb, (3) declarative
verb, (4) performative verb.

Domains (1) (2) (3) (4)
maintenance/assembly 65% 23% 12%

receipes 85% 13% 2%
procedural QA pairs 67% 11% 22%

communication 52% 26% 22%
average 67% 18% 15%

non-procedural texts 41% 35% 23% 1%

As can be noted, procedural texts have a much higher rate
of factive verbs, and much less stative verbs. declarative
verbs are about the same as in other types of texts. This
verb type discrimination criterion is not precise enough for
procedural text categorization, in particular to discriminate
communication procedural texts from non-procedural texts.

Morphological criterion: another criterion is the
morphology of the verbs encountered in procedural text.
Instruction verbs are usually at the imperative, infinitive and
or gerundive form. The more these forms are found in texts
the more procedural these texts are. The table below presents
the results obtained over a large list of verbs for procedural
text and non-procedural texts.

fig. 3 - (1) number total of the verbs in texts, (2) num-
ber of verbs in the imperative/infinitive/gerundive forms, (3)
percentage w.r.t. the total number of verbs.

Texts (1) (2) (3)
maintenance/assembly 826 523 63%

receipes 434 386 89%
procedural QA pairs 495 244 49%

communication 315 156 49%
total average for procedural texts 2070 1309 63%

non-procedural texts 776 200 26%

KRAQ'05 - IJCAI workshop - July 30th 2005 27

Our goal is not just to use an instruction to respond to a
How-question. It is often necessary to consider the level of
the ’instseq’ or higher, where quite generic goals, those fre-
quently encountered in How-questions, are found. ’Instseq’
are in general delimited by the expression of goals, which
may have various forms, and by typographic elements (e.g.
starting a new paragraph). Goals may be titles, well-identified
from a typographic point of view, or they may have the form
of a proposition introduced by a causal mark: to clean the oil
filter,

The parser that recognizes the structure of procedural texts
along the lines of the grammar given in the previous section
has been implemented in Prolog for fast prototyping. So far
it is quite simple, and still needs to be enriched in various
marks and lexical data. Integrated into this parser, besides
the closed-class elements (prepositions, connectors), we have
included a typology of typographic marks, as found in html
texts, a list of French verbs, classified along WordNet cri-
teria (Saint-Dizier, 1998), a simple temporal grammar from
an annotator, and a part of speech tagger. The parser runs
bottom-up, using a shallow parsing strategy so that it can at
least recognize parts of procedural texts. Its evaluation is still
ongoing.

5 Questionability of a text
We use the term questionability (term due to J. Virbel, 2004)
to express the ability or the relevance of any text, in our case
found on the Web, to respond to How-questions. The primary
goal is to have criteria to identify texts which are procedural
among those obtained from a search engine. The second goal
is to consider those procedural texts which are the most ap-
propriate for responding to procedural questions. This means
to be able to compare texts clearly identified as procedural
texts, in terms of their level of detail, informativity, readabil-
ity, conciseness, illustrations, number of links to other pages
or to other parts in that same text, prevention on actions, etc.

The evaluation of the questionability of a text can be made
a priori, independently from any particular query, or in rela-
tion with a query since some goals may be easier to identify
than others in given texts. In this section, we establish a com-
promise between these two views which are of much interest.
For the moment, a response to a how-question is found in a
single text, using relevance, clarity, and informativity crite-
ria. In a second stage, it would be of much interest to select
a text depending on the user profile (casual user or profes-
sional) and to be able to merge or to integrate texts when they
complement each other. These objectives are obviously very
difficult to implement.

Let us now present the different criteria we consider to
measure the questionability of a text. This measure is de-
composed into two stages. The first stage aims at selecting
those texts which should be a priori procedural texts. It is
essentially based on surface marks to guarantee a certain ef-
ficiency. The second stage concentrates on the query, and in-
troduces several relevance measures correlated with the query
to answer. It is presented in section 6.

The first stage, called the ”CATEG”, selects the subset of
texts returned by a search engine which should be procedural

texts according to the three ’surface’ criteria below; measures
are all relative to text size:

• typographic forms (noted as TF) of various kinds that
measure the architectural quality of the text. These
forms include those given in Fig. 1 of section 4.2.

• morpho-syntactic marks, (noted as MSM): in procedural
texts, we observed (cf. Fig. 3, in 4.2) that most verbs are
either in the infinitive or in the imperative form, there are
also marks that motivate the user to go further, such as
you must, you just have to, followed by an action verb, or
marks that indicate a task to realize: the next stage, the
next step, proceed as follows, care about, do not forget
to, etc. which abound in procedural texts,

• the presence of a large number of articulatory marks,
(noted as AM): temporal, argumentative, causal marks
to cite the most important ones (section 4.2).

Since it is quite difficult to assign relative weights to each
of these three criteria, we consider they have an equivalent
weight in the selection of procedural texts. Each counts for a
third of the decision. Given a set of n texts, we evaluate for
each text TF, MSM and AM. For example, TFi is the ratio:
number of typographic forms divided by the size of the text
in number of words in the text i. Then, for each criterion, the
average frequency is computed:
TFaverage = (Σi=1,n TFi)/n,
and similarly for the other two criteria. We can now define
the CATEG for text i w.r.t. the set of texts considered:
CATEGi = TFi/TFaverage + MSMi/MSMaverage +
AMi/AMaverage.

The second stage, the ”QUEST”, investigates in more
depth the questionability of the text. The objective is to eval-
uate the number of areas which can potentially match with
How-questions. This is carried out by identifying those ar-
eas in the text on which the matching with questions should
potentially be realized. Via our corpora analysis, it turns out
that those areas are essentially:

• the number of titles identified, under objectives and in
the summary (noted as TIT),

• the presence of a large number of action verbs (noted as
AV), (cf. Fig. 2, in 4.2),

• the number of goals identified, (1) associated with in-
struction sequences or (2) within basic sequences, asso-
ciated with the action to realize, (noted as GOA), and,
finally

• manners found in instructions (noted as MAN).

Different linguistic marks allow for the identification of the
goals and manner : the causal and manner connectors(e.g. in
order to, so, by + gerundive verb, with, etc.).

Similarly as above, we can define the QUEST
rate for a given text i in a collection of n texts.
QUESTi = TITi/T ITaverage + AVi/AVaverage +
GOAi/GOAaverage + MANi/MANaverage.

We can then compute an estimate of the overall ques-
tionability of a text i in a collection of n texts as follows:
CATEGaverage = (Σi=1,n CATEGi)/n,
QUESTaverage = (Σi=1,n NNi)/n,

KRAQ'05 - IJCAI workshop - July 30th 2005 28

questionabilityi =
CATEGi/CATEGaverage + QUESTi/QUESTaverage.

6 Responding to How-questions
The main aim of this project is to adequately and cooper-
atively respond to How-questions. An accurate and rele-
vant analysis of the structure of How-questions, of procedural
texts and of the notion of questionability establishes a basis
for associating a query to a response which is as adequate as
possible.

This task has several aspects, which entail investigations
on the long term. We report here the main organization of
our project and the results obtained so far. As advocated
above, we introduced, in a first stage, a few restrictions: How-
questions are short and relatively simple and a single proce-
dural text, or a fragment of it, is selected as a response. We do
not attempt, in this first stage, to merge texts, or to adapt the
results to the user profile. However, for evaluation purposes,
we list the four best candidates. We then make them accessi-
ble to the user, so that he/she can select the one he prefers.

Within our present perspective, responding to how-
questions involves the following tasks:
• selecting the procedural texts which have the best ques-

tionability rate. Since, at this level, the matching with
the query has not yet been done, we keep the 20 best
texts based on the metrics given above,

• matching the question body with ’questionable zones’
of procedural texts, hierarchically organized as: titles,
goals, manners, and defining the best match,

• extracting the relevant portion of the text and returning
it to the user in a user-friendly way.

The first step is realized as explained in the previous sec-
tion. The second step, matching the question body with texts,
is the most important part of the response construction. For
that purpose, we follow the principles elaborated on in Web-
Coop (Benamara et al., 2004) concerning concept query re-
laxation. The levels of relaxation remain however quite lim-
ited because, for example, generalizations are in general not
very relevant. In order to organize the matching procedure,
we used the Qristal software, developed by Synapse. W.r.t.
our aims, Qristal parses queries and introduces some flexi-
bility in term matching. Terms derived from the query terms
are specified in the response provided by this software. Re-
sults provided by Qristal are not very good by themselves,
nevertheless, they provide us with a good basis to analyze the
correspondences between the terms used in a query and those
found in the response. We also use the quite detailed ontology
provided in Qristal to find synonyms, parts, generic elements,
and morphological variants, as described below.

Let us now report our experiments concerning the match-
ing: query-procedural text. We carried out an experiment on
a set of 80 questions from various domains. For each ques-
tion, we examined the first 40 responses, identified a priori
as the best ones by Qristal. Among these 40 responses, an
average of 10 responses at least partly respond to the ques-
tion and are potential candidates according to the criteria pre-
sented in the previous section. Considering just the matching

procedure, results can be summarized as follows, we make a
distinction between verbs, common nouns and proper nouns,
prepositions are ignored:

• direct match, modulo flectional variants and abbrevia-
tions (for proper nouns): verbs: 42%, common nouns:
51%, proper nouns: 83%,

• match via synonyms and terms found via derivational
morphology (e.g. deverbals): verbs: 37%, common
nouns: 31%, proper nouns: 17%,

• match via part-of relation (wholes or parts): common
nouns: 10%,

• match via a more generic term: verbs: 17%, nouns: 7%.

Although results returned by Qristal are not perfect, they nev-
ertheless suggest the different steps of a matching strategy,
which can be combined with the criteria we introduced in the
previous section.

The main lines of the matching procedure is then as fol-
lows:

1. direct match (noted as DM) modulo flectional morphol-
ogy: global weight of this criterion: 0.55 (weighted av-
erage of the figures given above),

2. match via synomyms or derivational morphology (noted
as SDM): global weight: 0.30

3. match via part-of or more generic terms (noted as PGT),
global weight: 0.15.

We can then define the questionability of a text i w.r.t. a pre-
cise query Quest(Q). It is based on the number of terms
of the question found in the titles, goals, action verbs and
manners that match with the query. There may be overlaps
between titles and goals for example, as in QUEST, but no
discrimination is made at this level. Let NWQ,i be this total,
it is defined as follows:
NWQ,i = 0.55 × DM + 0.30 × SDM + 0.15 × PGT.
Given the n texts (see section above), we can then define:
NWQ,average = (Σi=1,n NWQ,i)/n.
The questionability rate of text i w.r.t. a precise query Q is
then defined by:
quest(Q, i) = NWQ,i/NWQ,average.
This rate allows us to order texts w.r.t. to their questionability
for a precise query Q, and then to select the most appropriate
one, considering also CATEG, in particular for the quality of
the response.

The last step consists in selecting the appropriate text frag-
ment that responds the question. So far, our strategy is quite
simple, and we have the following main situations:

• If the question matches with the title of the whole docu-
ment, then the document is selected as a whole,

• If the question matches with the title or the goal of an in-
struction sequence, as defined in the grammar, then that
whole sequence is selected. This is however a general
rule which suffers some exceptions. In particular, for al-
ternative sequences, it may be useful to select a larger
fragment of the text.

• If the question matches with a goal within an instruction,
then this instruction is returned to the user.

KRAQ'05 - IJCAI workshop - July 30th 2005 29

The adequacy of this rough strategy remains to be evaluated
in depth. Since it is not easy to predict when a larger text
fragment will be necessary, our strategy is to return a window
that displays a priori the selected portion, however, the user
can scroll it up or down to get a larger or a nearby text por-
tion. Besides the response, in case of an indirect match (e.g.
using more generic terms or synonyms), an explanation must
be provided so that the user understand why he gets such as
response. The explanation follows the template philosophy
presented in WebCoop (Benamara et al., 04), outlining the
terms that have been changed and why.

7 Perspectives
In this paper, we presented the general and rhetorical struc-
ture of procedural texts. We also investigated the structure
of How-Questions, outlining those which really induce re-
sponses under the form of sets of instructions. We then
showed how a procedural text can be characterized using
relatively external and simple criteria. Finally, we briefly
presented how to characterize the questionability of a text,
and how the response retrieval mechanism can be constructed
from this notion.

This work is still very experimental, it raises many ques-
tions. Our work needs to be deepened along many lines, in-
cluding response accuracy (quality and scope), response gen-
eration, and the development of more elaborated evaluation
methods, much more complex than e.g. the methods used in
TREC for factoid questions. Procedural texts are also useful
for answering Why questions (from goal and warning sec-
tions) that we intend to study.

References
[1] Adam, J.M., Types de Textes ou genres de Discours ?

Comment Classer les Textes qui Disent De et Comment
Faire, Langages, 141, pp. 10-27, 2001.

[2] Adam, J.M., Types de Sequences Textuelles Elementaires,
Pratiques n56, Metz, 1987.

[3] Aouladomar, F., Saint-Dizier, P., An Exploration of the
Diversity of Natural Argumentation in Instructional Texts,
5th International Workshop on Computational Models of
Natural Argument, IJCAI, Edinburgh, 2005.

[4] Benamara, F., Saint-Dizier, P., Advanced Relaxation
for Cooperative Question Answering, in: New Direc-
tions in Question Answering, in Mark T. Maybury, (ed),
AAAI/MIT Press, 2004.

[5] Bieger, G.R., Glock, M.D., The Information Content of
Picture-text Instructions, Journal of Experimental Educa-
tion, 53, 68-76, 1984-85.

[6] Delin, J., Hartley, A., Paris, C., Scott, D., Vander Lin-
den, K., Expressing Procedural Relationships in Multi-
lingual Instructions, Proceedings of the Seventh Interna-
tional Workshop on Natural Language Generation, pp. 61-
70, Maine, USA, 1994.

[7] Fellbaum, C., WordNet An Electronic Lexical Database,
The MIT Press, 1998.

[8] Greimas, A., La Soupe au Pistou ou la Conservation d’un
Objet de Valeur, in Du sens II, Seuil, Paris, 1983.

[9] Kosseim, L., Lapalme, G., Choosing Rhetorical Struc-
tures to Plan Instructional Texts, Computational Intelli-
gence, Blackwell, Boston, 2000.

[10] Longacre, R., Discourse Typology in Relation to Lan-
guage Typology, Sture Allen éd., Text Processing, Pro-
ceeding of Nobel Symposium 51, Stockholm, Almquist
and Wiksell, 457-486, 1982.

[11] Luc, C., Mojahid, M., Virbel, J., Garcia-Debanc, C.,
Pery-Woodley, M-P., A Linguistic Approach to Some Pa-
rameters of Layout: A study of enumerations, In R. Power
and D. Scott (Eds.), Using Layout for the Generation, Un-
derstanding or Retrieval of Documents, AAAI 1999 Fall
Symposium, pp. 20-29, 1999.

[12] Luger, H.H., Pressesprache, Tubingen, Niemeyer,
1995.

[13] Mann, W., Thompson, S., Rhetorical Structure Theory:
Towards a Functional Theory of Text Organisation, TEXT
8 (3) pp. 243-281, 1988.

[14] de Mattos Pimenta Parente, M-A., Steffen Holderbaum,
C., Virbel J., Nespoulous, J-L., Text Questionability as a
predictor of story recall, Thirteen Annual Meeting of the
Society for Text Understanding, Madrid, 2003.

[15] Mortara Garavelli, B., Tipologia dei Testi, in G. Hodus
et al.: lexicon der romanistischen Linguistik, vol. IV, Tub-
ingen, Niemeyer, 1988.

[16] Muller,P., Tannier, X., Annotating and Measuring Tem-
poral Relations in Texts, In Proceedings of Coling 2004,
volume I, pages 50-56, Geneve, 2004.

[17] Qamar, H., Quand Dire c’est: Ecrire-Comment-faire.
Un Autre Type de Texte: le RECETTAL, these soutenue
l’Universite Lumiere, Lyon II, 1996.

[18] De Rijke, M., Question Answering: What’s Next?, the
Sixth International Workshop on Computational Seman-
tics, Tilburg, 2005.

[19] Rosner, D., Stede, M., Customizing RST for the Auto-
matic Production of Technical Manuals, in R. Dale, E.
Hovy, D. Rosner and O. Stock eds., Aspects of Automated
Natural Language Generation, Lecture Notes in Artificial
Intelligence, pp. 199-214, Springler-Verlag, 1992.

[20] Saint-Dizier, P., Verb Semantic Classes Based on ’Alter-
nations’ and WordNet-like criteria, in : Predicative Forms
in Natural language and lexical Knowledge Bases, Reds:
Saint-Dizier,P., Eds: Kluwer Academic, Cambridge, USA,
1998.

[21] Saint-Dizier, P., PrepNet: a Framework for Describ-
ing Prepositions: Preliminary Investigation Results, the
Sixth International Workshop on Computational Seman-
tics, Tilburg, 2005.

[22] Schwitter, R., Rinaldi, F., Clematide, S., The Impor-
tance Of How-Questions in Technical Domains, TALN,
Workshop Question-Reponse, Fes, Maroc, 2004.

KRAQ'05 - IJCAI workshop - July 30th 2005 30

[23] Takechi, M., Tokunaga, T., Matsumoto, Y., Tanaka,
H., Feature Selection in Categorizing Procedural Expres-
sions, The Sixth International Workshop on Information
Retrieval with Asian Languages (IRAL2003), pp.49-56,
2003.

[24] Vander Linden, K., Speaking of Actions Choosing
Rhetorical Status and Grammatical Form in Instructional
Text Generation Thesis, University of Colorado, 1993.

[25] Werlich, E., Typologie der Texte, Heidelberg, Quelle and
Meyer, 1975.

[26] Yin, L., Topic Analysis and Answering Procedu-
ral Questions, Information Technology Research Insti-
tute Technical Report Series, ITRI-04-14, University of
Brighton, UK, 2004.

KRAQ'05 - IJCAI workshop - July 30th 2005 31

Towards a Framework for Collating Help-desk Responses from
Multiple Documents

Yuval Marom and Ingrid Zukerman
School of Computer Science and Software Engineering,

Monash University
Clayton, VICTORIA 3800, AUSTRALIA
{yuvalm, ingrid}@csse.monash.edu.au

Abstract

Responses to help-desk email inquiries are often
repetitive, sharing varying degrees of commonal-
ity. In addition, a significant proportion of the re-
sponses are generic, containing a very low level
of technical content. In this paper, we present a
corpus-based approach for identifying common el-
ements in help-desk responses and using them to
construct a new response. A help-desk domain is
unique in that responses that contain even one in-
congruous sentence can alienate a user. It is there-
fore not always possible to automatically generate
a complete response, because personalization is of-
ten better handled by human operators. Our system
is designed to find and collate the generic portions
of responses. We have adapted multi-document
summarization techniques, and developed a mea-
sure that predicts the completeness of a planned re-
sponse, thus indicating when a fully automated re-
sponse is possible. Our evaluation shows that 14%
of the responses in our corpus can be represented
by complete generic responses.

1 Introduction
Email inquiries sent to help desks are often repetitive, and
generally “revolve around a small set of common questions
and issues”.1 This means that help-desk operators spend most
of their time dealing with problems that have been previously
addressed. Further, a significant proportion of help-desk re-
sponses contain a very low level of technical content, reply-
ing, for example, to inquiries about returning a product or
questions addressed to the wrong group, or pointing out that
the customer has provided insufficient detail about his/her
problem. Organizations and clients would therefore benefit
if an automated process was employed to deal with the easier
problems, and the efforts of human operators were focused
on difficult, atypical problems.

In this paper, we present an initial report of our corpus-
based approach to achieving this objective with respect to

1http://customercare.telephonyonline.com/
ar/telecom_next_generation_customer/C.

email inquiries sent to Hewlett-Packard (HP). We are devel-
oping a system to automatically generate responses to users’
requests on the basis of responses seen in a corpus of email
dialogues. Since help-desk inquiries revolve around a small
set of common problems, there is significant overlap in the
content of the responses, but there are also differences arising
from tailoring responses to particular user needs. For exam-
ple, a response could consist of a generic description of how
to install new printer drivers (the same for all printer models),
preceded by a reference to a specific download location (dif-
ferent for each model). Also, a response in the corpus may
refer to several, distinct problems raised by a user, where the
answer to each problem appears repeatedly in the corpus, but
the complete response does not.

In some cases, a new request might match a previous one
very well, suggesting a traditional document retrieval ap-
proach, where a response document in the corpus can be re-
used in its entirety. However, when a new request matches
several previous requests whose responses have common but
also different elements, document re-use is not appropriate.
Instead, a response should be composed from parts of differ-
ent responses.

This task is similar to query-relevant, multi-document sum-
marization in the sense that different documents (i.e., candi-
date responses) must be combined to produce one response
that is relevant to a user’s request or interests. However, there
is a significant difference between these tasks. Users of sum-
marization systems will gloss over items of information that
are not entirely relevant, whereas a help-desk response that
contains even a single incongruous sentence will alienate the
user. Therefore, the responses generated by our system must
have very high relevance, even if this comes at the expense
of completeness. If a complete response is not possible, it is
more sensible to prompt a human operator to complete a par-
tial response than to risk presenting incongruous information.

We postulate that there are two main types of information
items that should be included in a response: generic, which
are common to all (or most of) the responses that match a
user’s query, and specific, which address particular issues in
the user’s query. In the above example about drivers for print-
ers, the general information about drivers would appear in
most of the responses that match the given query, while the
download information about a particular printer would appear
only in specific replies. The approach proposed in this pa-

KRAQ'05 - IJCAI workshop - July 30th 2005 32

per identifies the former, i.e., information items that can be
“safely” included in a reply. Further, we propose a measure
to model our system’s confidence in the completeness of a
planned response composed of such safe elements. These are
typically generic responses that have a low technical content.

The rest of this paper is organized as follows. In Section 2,
we describe our corpus. Section 3 details our approach for
generating the generic portions of help-desk responses and
for assessing the completeness of planned responses. The
evaluation of our approach is presented in Section 4. In
Section 5, we discuss our first attempts at personalizing re-
sponses. Section 6 considers related work, followed by con-
cluding remarks.

2 Corpus
Our corpus consists of 30000 email dialogues between users
and help-desk operators at HP. These dialogues deal with
a variety of user requests, which include requests for tech-
nical assistance, inquiries about products, and queries about
how to return faulty products or parts. We have divided the
corpus into topic-related datasets. For example, there is a
“product replacement” (PRDRP) dataset with 1416 dialogues,
and a “desktop” (DESKTOP) dataset with 590 dialogues. Fur-
ther, we are focusing on 2-turn dialogues, as we are targeting
user requests that can be dealt with using one response (about
80% of our corpus consists of 2-turn dialogues). Owing to
time limitations, the procedures described in this paper were
applied only to datasets comprising between 300 and 1500
(2-turn) dialogues, which corresponds to a total of 8000 dia-
logues.

Below are two responses from the PRDRP dataset.

R1: I apologize for the delay in responding to your issue. Your
request for a return airbill has been received and has been sent
for processing. Your replacement airbill will be sent to you via
email within 24 hours.

R2: I apologize for the delay in handling your issue. Your request
for a return airbill has been received and has been sent for
processing. Your replacement airbill will be sent to you via
email within 24 hours.

We can identify three functional “building blocks” for both
responses: apologize, confirm and inform. Even though there
is a minor difference between their opening sentences (“re-
sponding to” vs. “handling”), the responses are essentially
identical. In contrast, response R3 below contains rather dif-
ferent building blocks, although it shares the first one with R1
and R2.

R3: I apologize for the delay in responding to your issue. We are
unable to send out replacement labels for return boxes. Please
contact Technical Support at 1-800-OKCOMPAQ to have an-
other box dispatched to you.

In the next section we present our approach for representing
and collating building blocks of responses.

3 Approach — Building blocks for responses
In order to find similarities between responses in our corpus,
we believe it is necessary to represent building blocks at the
sentence level. This is motivated by the characteristics of our

task and domain: (1) the corpus contains repeated informa-
tion at an intermediate level of abstraction (between entire
responses and individual words), and (2) even a single incon-
gruous sentence in a generated response could alienate a user.
Further, the similarities between parts of responses should be
abstracted from their exact wording, so that sentences that
convey essentially the same meaning can be treated as the
same building block. When doing so, care must be taken to
ensure that we are able to confidently select representative
sentences in the response generation stage.

We have developed a system that finds response building
blocks by clustering sentences. We extract all the sentences
from the responses in a particular dataset, and then cluster
them into Sentence Types (STs). This procedure should yield
cohesive clusters for similar sentences, from which it is easy
to select a representative sentence. In contrast, sentences that
have differences would yield less cohesive clusters, thereby
making it more difficult to select a representative sentence.
This motivates a measure of cluster cohesion.

When generating a response to a new request, the system
needs to know the building blocks for this response, i.e., the
sentence types to use. In this paper we focus on the generation
of the generic portion of responses. This generic portion may
actually yield a complete response, such as R1 and R2, or a
few sentences in a response, such as the first two sentences in
R3. Our approach consists of three steps:

1. Finding Response Types (RTs): groups of responses that
share similar building blocks. Each group specifies the
set of sentence types that the responses in the group
agree on. We refer to this agreement as the support for
the STs. In addition, we define a “semantic compact-
ness” measure for the completeness of a response type,
measured as the proportion of cohesive sentence types
that are highly supported.

2. Producing a “model” response for each response type.
This is achieved by selecting representative sentences
from the cohesive sentence types that are supported by
the group of responses.

3. Matching a new request with one or more response
types. If only one response type is matched and it is
considered complete by the semantic compactness mea-
sure, then its generated response can be sent directly to
the user. Otherwise, a single response that is incomplete
or several candidate responses (complete or otherwise)
can be passed to an operator.

In this paper, we focus on the first two steps, i.e., construct-
ing groups of responses, and generating a representative re-
sponse for each group. In Section 5, we report on results of
preliminary experiments involving the third step.

In the remainder of this section we give more detail on the
different parts of the system: (1) identifying sentences types;
(2) clustering responses according to the sentence types they
contain; (3) calculating the “semantic compactness” of the
response clusters; and (4) selecting sentences for inclusion in
a response (Figure 1 illustrates Steps 1, 2 and 4).

KRAQ'05 - IJCAI workshop - July 30th 2005 33

s3598
s3597
s3596
s3595

.

.

.
.

.

.

s1
s2
s3
s4

s3596
s3597
s3598

s3595
.
..

s5: "I apologize for the delay in

s8: "I apologize for the delay in
responding to your issue"

handling your issue"

Pr(ST3|s8)=0.99;Pr(s8|ST3)=0.0006
Pr(ST3|s5)=0.99;Pr(s5|ST3)=0.323

RT10
ST3(0.795;0.97) ST12(0.999;0.97) ST25(0.999;1)

ST10(0.949;1) ST12(0.838;0.97)

Pr(ST12|s20)=0.99;Pr(s20|ST12)=0.0014

ST22(0.95;0.62) ST24(0.842;0.46) ST25(0.844;1)
Pr(ST12|s11)=0.99;Pr(s11|ST12)=0.316

RT3

ST(p ; q)Notation:

s4
s3
s2
s1

s6
s7

s5

.

..

ST25

ST2

ST1
s1(0.9) s3(0.95) ... s3595(0.7)

s3(0.05) ... s3595(0.3)

s1(0.1)...
R1(0.2) ...

RT10

R1(0.8) R2(0.1) ...
RT1

. . .

ST1 ST2 . . . ST25

s5
s6
s7

. . .

. . .

. . .

. . .

. . .

. . .

0.95 0.05 . . . 0

0.7 0.3 . . . 0

(1 0 . . . 1)

(1 1 . . . 1)

(1 1 . . . 0)

0.1

CLUSTERING RESPONSES BASED ON SENTENCE TYPES

0.8

RV1205

RV2

RV1

0.6

0.2

CLUSTERING SENTENCES

0.3

0.95

0.9

0.7

0.05

0.1

... R1205(0.6)
RT2

RM1205

RM2

RM1
0.9 0 . . . 0.1

. . .

SELECTING SENTENCES FOR RESPONSE TYPES

RD1205

RD2

RD1

Figure 1: Sentence and response clustering, and response generation, for the PRDRP dataset.

3.1 Identifying sentence types
The representation used for clustering sentences is crucial,
because it determines what constitutes similarity. In R1 and
R2 the minor difference between ‘handling’ and ‘responding’
is inconsequential. However, if the last sentence of R1 were
“Your replacement airbill will be sent to you via email within
48 hours”, the difference would be important (24 hours ver-
sus 48).

Our current implementation uses a bag-of-words approach
with binary values. That is, each sentence is represented by
means of a binary vector of size N (number of feature words
in the dataset), where element j is 1 if (lemmatized) word
wj is present in the sentence, and 0 otherwise. Although this
representation treats both of the above examples in the same
way, we have found it a useful starting point. In the future, we
plan to investigate context-dependent representations, such as
that proposed by Lin [1998], and automatic tagging of certain
types of words, such as numbers and case identifiers.

Once all the sentences have been extracted from the re-
sponses in a dataset, they are passed on to SNOB, a cluster-
ing program based on the Minimum Message Length prin-
ciple [Wallace and Boulton, 1968]. SNOB yields m sen-
tence types, where m varies for each dataset. For example,
the PRDRP dataset has 25 sentence types, and the DESKTOP
dataset has 40. Each sentence type STi, i = 1, . . . , m, is rep-
resented by means of a centroid CSTi — an N -dimensional
vector, such that CSTi[j] = Pr(wj ∈STi) is the probabil-
ity that word wj is used in STi. The left panel of Fig-
ure 1 illustrates the sentence-clustering process for the PRDRP
dataset, which contains 1205 response documents (RD1, . . .,
RD1205) comprising a total of 3598 sentences. As seen
in this example, a sentence may probabilistically belong to
more than one sentence type, e.g., Pr(ST1|s1) = 0.9 and
Pr(ST25|s1) = 0.1 (these probabilities are provided by
SNOB).

3.2 Clustering responses
We apply SNOB again to cluster responses into response
types, but first we perform the following steps to represent
responses by means of sentence types (these steps are illus-
trated in the middle panel of Figure 1 for the PRDRP dataset).

Representing sentences in terms of sentence types. We
represent each sentence sj by means of an m-dimensional
vector, where m is the number of sentence types. Element i
in the vector for sentence sj contains Pr(STi|sj) (the proba-
bility that sj belongs to sentence type STi). We then combine
the vector for each sentence in response Rk into a Response
Matrix RMk of size nk×m, where nk is the number of sen-
tences in Rk. For instance, as seen in the middle panel of
Figure 1, RM1, the response matrix for response R1, com-
prises the vectors for sentences s1, s2, s3 and s4; the vector
for s1 indicates that Pr(ST1|s1) = 0.9, Pr(ST25|s1) = 0.1
and Pr(STj |s1) = 0 for j = 2, . . . , 24 (these probabilities
sum to 1).

Representing responses in terms of sentence types. For
each response matrix RMk, we derive an m-dimensional Re-
sponse Vector RVk, such that for i = 1,. . . ,m

RVk[i] =

{

1 if ∃RMk[j, i] ≥ 0.1 for j = 1, . . . , nk

0 otherwise (1)

That is, RVk[i] = 1 indicates that sentence type STi has some
presence in response Rk (with probability ≥ 0.1). We use a
binary representation for the RVs because (1) it provides a
reasonable first baseline for our system, and (2) the centroids
of the resultant clusters have clear probabilistic semantics.
In the future, we intend to investigate real-valued represen-
tations, e.g., set RVk[i] to be the maximum of the RMk[j, i]
for all j.

Clustering. The response vectors are given to SNOB,
which clusters them into response types. The number of
response types varies for different datasets. For instance,
PRDRP and DESKTOP have 10 and 9 response types respec-
tively. Each response type RTl is represented by means
of a centroid CRTl — an m-dimensional vector, such that
CRTl[i] = Pr(STi ∈ RTl) is the probability that sentence
type STi is used in response type RTl.

3.3 Calculating semantic compactness
The response clustering process yields a centroid for each re-
sponse type. The centroid of a response type can be inter-
preted as a set of probabilities, p = {p1, p2, . . . , pm}, where

KRAQ'05 - IJCAI workshop - July 30th 2005 34

pi represents the support in the response type for sentence
type STi. In other words, pi corresponds to the proportion of
responses in the response type that use STi.

The Semantic Compactness (SemCom) measure predicts
whether a complete, high-precision response can be gener-
ated for a response type. This measure is based on the sup-
port and cohesion of each sentence type. The former can
be obtained from the support probabilities p, while for the
latter we define the following measure of cohesion q =
{q1, q2, . . . , qm}, where qi for sentence type STi is defined
as follows.

qi =
1

N

N
∑

j=1

δ(CSTi[j] ≤ α ∨ CSTi[j] ≥ 1 − α) (2)

where N is the number of feature words in the data set, α

is an empirically determined threshold, and δ is the boolean
function

δ(A) =

{

1 if event A is true
0 otherwise

By choosing a value for α close to zero, Equation 2 spec-
ifies that a sentence type is cohesive if there is a high pro-
portion of words that are almost certainly present or almost
certainly absent from this sentence type.2 The rationale for
this measure is that a cohesive group of sentences should
agree strongly on the words they use and the words they omit.
Hence, it is possible to obtain a sentence that adequately rep-
resents a cohesive sentence type, while this is not the case for
a loose sentence type.

For example, the opening sentences in R1 and R2 belong to
a sentence type which is a cluster consisting of 810 identical
repetitions of the sentence from R1, and 15 identical repeti-
tions of the sentence from R2. The cohesion of this sentence
type is 0.97. An example of a non-cohesive sentence type is
one which consists of sentences about part numbers and or-
der numbers, such as “Your part has been received”, “Please
verify that this is the correct order number”, “No part return
is required on this order”, and “The case number provided is
not coming up in our system”. These sentences share a few
words (mainly ‘part’, ‘order’ and ‘number’), but do not dis-
cuss anything specific about these words — we could not con-
fidently select a representative sentence from this sentence
type. The cohesion of this sentence type is 0.65.

The semantic compactness of a response type with support
p and cohesion q is calculated as follows.

SemCom(p,q) =

∑m

i=1
δ(pi ≥ τ Hi ∧ qi ≥ τ Coh)
∑m

i=1
δ(pi ≥ 0.1)

(3)

where τ Hi and τ Coh are empirically determined thresholds.
SemCom measures the proportion of highly supported and
cohesive sentence types among the sentence types that have
some support (hence the low threshold of 0.1 in the denom-
inator). If this proportion is high, the proposed response is
deemed semantically compact, which means that it is a good
candidate for automatic response generation. As the value of

2This measure is a simplification of entropy, in the sense that it
yields non-zero values for extreme probabilities.

this proportion decreases, so does the confidence of automat-
ically generating a complete response. During response gen-
eration, our system compares the semantic compactness of a
proposed response with an empirically determined threshold,
in order to determine whether a human operator should par-
ticipate in the composition of a reply.

In Section 4.2 we evaluate the semantic compactness mea-
sure, and suggest a value for its threshold. Further, the results
we report in that section were obtained with rather stringent
thresholds (τ Hi = 0.75, τ Coh = 0.9 and α = 0.01), in or-
der to implement a cautious approach that avoids including
potentially incongruous sentences in automatically generated
responses. However, our sensitivity analysis shows that the
quality of our responses is largely maintained even if we re-
lax some of these thresholds [Marom and Zukerman, 2005].

3.4 Selecting sentences for inclusion in a response
Sentences can be (probabilistically) associated with multi-
ple sentence types, so we need a method of selecting the
most representative sentences to include in a response, while
avoiding repetition. Filatova and Hatzivassiloglou [2004] ad-
dress this problem, and we have implemented a modified ver-
sion of their adaptive greedy algorithm for scoring sentences.
Our system selects the most representative sentences from the
most supported and cohesive sentence types.

The clustering program SNOB provides Pr(sj |STi), the
probability of a sentence sj given a sentence type STi, which
we can use as an indication of how representative this sen-
tence is of the sentence type.3 For example, when selecting
a sentence from the sentence type corresponding to the open-
ing sentences in R1 and R2, the sentence in R1 has a higher
probability because it appears more frequently in that cluster.

The score of each sentence is calculated as follows.

Score(sj) =

m
∑

i=1

Pr(sj |STi) × pi × δ(qi ≥ τ Coh) (4)

The last factor ensures that only cohesive sentence types con-
tribute to the score of a sentence, thus safeguarding against
potentially incongruous sentences.

Following the adaptive greedy algorithm, the system scores
and sorts all the sentences, and then identifies which sen-
tences represent sentence types that are already represented
by higher-scoring sentences. The score of the lower-scoring
sentences is then reduced by the contribution from the shared
sentence type, thus reducing the chances of repetition in the
response. We include in the response only sentences whose
score is greater than zero. It is worth noting that our system
does not currently address the order of sentence presentation,
and therefore our evaluation is based purely on the content of
a response.

The right panel of Figure 1 illustrates the generation of
a response for two response types, RT3 and RT10 (for ex-
ample, in RT3, the notation ST12(0.838;0.97) means that
p12 = Pr(ST12 ∈ RT3) = 0.838 and q12 = 0.97). RT3
contains five sentence types with a high value for

3Note that Pr(sj |STi) is different from the posterior Pr(STi|sj),
which can be interpreted as the probability that sj belongs to sen-
tence type STi (shown in the left panel of Figure 1).

KRAQ'05 - IJCAI workshop - July 30th 2005 35

−0.5
0

0.5
1

1.5

−2

−1.5

−1

−0.5

0

0.5
−1.5

−1

−0.5

0

0.5

1

10
3

2

6

5798
41

Figure 2: Response types for the PRDRP dataset.

Pr(STi ∈ RT3), but only three of them have high cohesion
(ST10, ST12 and ST25). Hence, we only include sentences
from these sentence types in the response generated from
RT3. In contrast, all the sentence types in RT10 have a
high value for Pr(STi ∈ RT10) and high cohesion — this
response type has a semantic compactness of 1.0. Hence,
a complete summary can be generated from these sentence
types. As seen in Equation 4, since the ps and qs are high
for all the sentence types in RT10, the selection of a repre-
sentative sentence for these sentence types depends mainly
on Pr(sj |STi). In this example, s5 is selected to represent
ST3, as Pr(s5|ST3) is much higher than Pr(s8|ST3). The
resultant generated response is identical to response R1.

4 Evaluation
In this section, we first illustrate the output produced by our
system for two datasets (including the previously discussed
PRDRP dataset). We then examine the predictive performance
of our SemCom measure, and finally make some overall ob-
servations about the coverage and completeness of model re-
sponses.

4.1 Sample datasets
The PRDRP dataset
Figure 2 shows a 3D projection of the centroids of the re-
sponse types discovered for the PRDRP dataset (the response
types are represented by their numbers).4 The figure shows
(to some extent) how different the RTs are from each other.
Response Type 10, discussed above, is the most significant
one as it accounts for 862 responses (71%). According to
Figure 2, the RTs most different from RT10 are RT1 and RT6.
Both RTs have a perfect semantic compactness, they account
for 72 and 49 responses respectively, and their generated re-
sponses are R4 and R5, respectively.
R4: Your request for a return airbill has been forwarded to the

proper group. You will receive your replacement airbill within
24 hours.

4This figure is generated using Principal Component Analysis
(PCA); it is a projection of the 25-dimensional centroid values onto
the first three principal components discovered by PCA, which cor-
respond to the axes in the figure. These components account for
approximately 70% of the variability in the data (measured as the
relative contribution of the first three eigenvalues of the covariance
matrix).

R5: I apologize for the delay in responding to your issue. Your
request for a return airbill has been received. Additional in-
formation is needed to process your request. Please provide a
case number or an order number so that we may send you a
replacement label.

These three response types together account for about 81.5%
of the responses in the dataset. That is, the system is able
to find three different kinds of generic responses, and con-
fidently generate complete automatic responses that account
for 81.5% of the actual responses.

The response-clustering procedure also finds groups of re-
sponses that cannot be replaced by model responses. For ex-
ample, RT9 accounts for 55 responses, but has a semantic
compactness of 0.0. This means that the responses in this
cluster strongly disagree about which sentence types to use,
or that the sentence types that they agree on are non-cohesive.
Thus RT9 does not generate any sentences. An example of a
response in this response type is R6, a fairly specific, person-
alized response.

R6: It is usually required that the case number and order number
are provided, however in your circumstances we will see what
we can do to help. What other information can you provide?
Do you have the serial number of the unit?

The TAPEDRV dataset

Our findings show that different datasets have different pro-
portions of responses that can be replaced by generic re-
sponses. The PRDRP dataset has the highest potential for the
generation of a complete response, while only 35% of the re-
sponses in the TAPEDRV dataset (concerning tape drives) can
be generated by our system in their entirety. However, our
system can also generate partial responses from a response
type. These responses contain sentences extracted from a
subset of highly cohesive sentence types in the response type.
An example of a partial response for the TAPEDRV dataset is
R7.

R7: Thank you for contacting HP’s Customer Care Technical Cen-
ter. We are only able to assist customers with in warranty prod-
ucts through our email services. At the present time, we have
the following numbers to contact technical support for your
out of warranty product.

The response type that generated this response accounts for
19 responses, and has a semantic compactness of 0.25, which
means that, on average, the generated response covers only
a quarter of the actual responses. Examples of sentences that
appear in the actual responses that make up this response type
are: “As your product is out of warranty, you can visit the link
given below for complete details regarding the COLORADO
8GB TRAVAN tape drive: URL”, and “The 5 BG Internal
travan drives should be recognized and configured automat-
ically by Windows XP using the native QIC157 driver”. The
additional information in these sentences is very specific and
quite unique, which accounts for the low semantic compact-
ness of the response type. The part of the response generated
by our system can be regarded as a generic opening segment,
with the remainder of the response to be completed by an op-
erator.

KRAQ'05 - IJCAI workshop - July 30th 2005 36

0 0.2 0.4 0.6 0.8 1
0

0.5

1

 SemCom

A
vg

 P
re

ci
si

on
/R

ec
al

l

0 0.2 0.4 0.6 0.8 1
0

0.25

0.5

0.75

1

 SemCom

A
ve

ra
ge

 F
−

sc
or

e

Precision
Recall

Figure 3: Relationship between semantic compactness and
precision and recall (top plot), and F-score (bottom plot).

4.2 Predictive performance of SemCom
Our SemCom measure is designed to predict the completeness
of an automatically-generated response composed of high-
precision sentences. In order to determine the utility of this
measure, we examine how well it correlates with the quality
of the generated responses.

We assess the quality of a generated response rg by com-
paring it with the actual responses in the response type from
which rg was sourced. To this effect, we use three well-
known information retrieval measures: precision, recall and
F-score [Salton and McGill, 1983]. Precision gives the pro-
portion of words in rg that match those in an actual response;
recall gives the proportion of words in the actual response
that are included in rg ; and F-score is the harmonic mean of
precision and recall. Precision, recall and F-score are then
averaged over the responses in rg’s response type to give an
overall evaluation of rg .5 For example, RTs 1, 6 and 10 have
respective average F-scores of 0.78, 0.82 and 0.80.

Figure 3 shows the relationship between semantic com-
pactness and precision, recall and F-score for the 135 re-
sponse types created for the different datasets. From the fig-
ure we see that precision is generally high, and is uncorre-
lated with SemCom. This is not surprising, as the sentence-
selection process is designed to select high-precision sen-
tences. Hence, so long as at least one sentence is selected,
the text in the generated response rg will agree with the text
in the responses that are represented in rg’s response type.
In contrast, recall is highly correlated with SemCom. A de-
crease in SemCom indicates that fewer sentences are included
in the generated response, which therefore covers less of the
information in the original responses. As expected from these
results, the overall F-score is also highly correlated with se-
mantic compactness. The linear and log correlations between

5In addition to these measures, which are calculated on a word-
by-word basis, we experimented with the ROUGE evaluation proce-
dure, which also takes into account word sequences [Lin and Hovy,
2003]. The simpler word-by-word evaluation correlated well with
ROUGE, hence we only report on the former.

the semantic compactness measure and F-score are 0.89 and
0.9 respectively, which demonstrate the high predictive power
of the SemCom measure.

However, for the predictions made by SemCom to be use-
ful, they must also agree with users’ views. To test whether
this is the case, we conducted a small, preliminary study as
follows. We constructed four evaluation sets by selecting four
response types with high semantic compactness (≥ 0.7), au-
tomatically generating a response from each response type,
and selecting 15 actual responses from each response type for
comparison.6 Each evaluation set was given to two judges,
who were asked to rate the precision and completeness of
the generated response compared to each of the 15 responses
in the set. Our judges gave all the automatically generated
responses high precision ratings, and completeness ratings
which were consistent with our semantic compactness mea-
sure.

4.3 Overall observations
Once we were confident that our semantic compactness mea-
sure can reliably predict the completeness of a generated re-
sponse, we were interested to get an overall impression of
the proportion of generic responses in our corpus. That is,
we wanted to find out what proportion of responses could be
represented by complete or partial model responses. For ex-
ample, we saw in Section 4.1 that 81.5% of the responses in
the PRDRP dataset can be represented by complete model re-
sponses.

Model responses are complete if their response types
have a high semantic compactness. Figure 3 suggests that
SemCom > 0.7 results in a high F-Score. If we consider this
threshold to indicate a complete response, the response types
that exceed it account for approximately 14% of the actual
responses in the various datasets. If we consider a thresh-
old of 0.4 to indicate a medium semantic compactness, then
the additional response types that exceed it account for a fur-
ther 6% of the responses — these response types would pro-
duce partial responses. The remaining 80% of the responses
would have to be mostly written by an operator. However, this
may be a pessimistic estimate, as some response types with a
low SemCom yield reasonable partial responses, such as R7
whose response type has a SemCom of 0.25 (Section 4.1).

5 Tailoring responses to users’ requests —
preliminary trials

In order to enable the system to respond flexibly to spe-
cific user requests, user-driven summarization must be imple-
mented. To this effect, we are considering two approaches:
(1) predicting response types from request features in order
to test whether model responses can be used to address some
requests; and (2) predicting sentence types from request fea-
tures in order to construct a response from parts of multiple
responses in the corpus. Here we report on our preliminary
trials for the first option, and present our ideas for the second
option.

6Several of our automatically-generated responses match per-
fectly the operators’ responses. Since these are obvious matches,
they were not included in our study.

KRAQ'05 - IJCAI workshop - July 30th 2005 37

5.1 Predicting response types
We trained a Decision Graph [Oliver, 1993] (an extension of
the decision trees described in [Wallace and Patrick, 1993]) to
predict which RT is most appropriate for a given user request.
We extracted various features as input to the Decision Graph,
e.g., word unigrams with TF.IDF weights; word bigrams with
binary weights; noun, verb, adjective and adverb frequencies;
and email length (number of sentences). The features that
turned out to be most significant were the word unigrams and
bigrams.

For example, in one dataset the Decision Graph contained
a split on the word ‘xp’, which differentiated two response
types. These response types were very similar, both request-
ing more information from the user, and providing contact
numbers for out-of-warranty products. The main difference
between them was the sentence “However, the software sup-
port for the Windows XP platform will be offered through a
solution supplied by VERITAS. Please visit the link given be-
low in order to get in touch with VERITAS”. In a different
dataset, the responses were so varied that for most of them the
system could only generate the sentence “Thank you, HP eS-
ervices”. However, the Decision Graph predicted that if the
words ‘cp-2e’ or ‘cp-2w’ (referring to specific router mod-
els) were present in the request, then a response type with
very high semantic compactness could be used, resulting in
response R8.
R8: Based on the serial number or other information you’ve pro-

vided, your system is a consumer (home) product that is sup-
ported by a different group. The Consumer Product Support
Group has been trained in the support of the Presario prod-
uct line and they are best equipped to answer your questions.
Please resubmit your question at URL.

If the Decision Graph predicts a single response type with a
high semantic compactness, then a fully automated response
is possible. If, however, the response type is not complete,
or more than one response type have been matched, then a
human operator is presented with the response(s). This was
generally the case in the trials we conducted. We built De-
cision Graphs for five datasets that had at least one response
type with a high semantic compactness. The resultant graphs
had between three and five leaves, most of which pointed to
2-3 response types with varying degrees of certainty.

5.2 Predicting sentence types
Our results indicate that only a small proportion of requests
can be addressed with complete model responses. We are
currently investigating an alternative approach whereby we
map features in users’ requests directly to sentence types, and
then compose a reply from sentence types. We believe that
this level of granularity will enable our system to exhibit the
functionality required for flexibly addressing user requests.

The general framework is shown in Figure 4, where a gen-
eralization module is used to learn mappings from features in
users’ requests to sentence types in the responses to these re-
quests. The former would be similar to the features extracted
for the Decision Graph approach, while an example of the
latter is a binary pattern similar to the response vector RV
defined in Equation 1 (also shown in the middle panel of Fig-
ure 1). The generalization module is essentially a supervised

ResponseRequest

sentence
typesGeneralization

Module

features

(a) learning mappings between request features and sentence
types, using all request-response pairs in the corpus

Request
New Generalization

Module

sentence
typesfeatures

(b) predicting a set of sentence types for a new user request

Figure 4: Framework for a sentence-type based approach.

learning system that is trained on request-response pairs in the
corpus (Figure 4(a)). The trained system is then used to pre-
dict which sentence types to use in a response to a new user
request (Figure 4(b)). These predictions can be interpreted as
the support for the sentence types given the request features.
The procedure described in Section 3 can then be applied: the
SemCom measure can be used to assess the completeness of a
response comprising highly supported sentence types (Equa-
tion 3), and actual sentences can be scored and selected using
Equation 4.

For example, we envisage that a feature corresponding to
the time since the arrival of the user’s request can predict
the usage of the sentence type corresponding to the opening
sentences in R1 and R2 (apologizing for the delay in the re-
sponse). In another example, we envisage that the unigram
feature ‘xp’ would predict the usage of two sentence types
corresponding to the sentences shown in the example in Sec-
tion 5.1 (providing a specific address for XP users).

6 Related Research
The idea of clustering text and then generating a sum-
mary from the clusters has been previously implemented in
multi-document summarization systems [Radev et al., 2000;
Hatzivassiloglou et al., 2001; Filatova and Hatzivassiloglou,
2004]. A key issue highlighted in such work is the choice
of features used in the clustering. Radev et al. used low-
level word-based features [Radev et al., 2000], while Hat-
zivassiloglou and colleagues used higher-level, grammatical
features obtained through part-of-speech tagging [Hatzivassi-
loglou et al., 2001; Filatova and Hatzivassiloglou, 2004]. Our
work differs from previous work on clustering and summa-
rization in three respects. Firstly, the high-level features (sen-
tence types) we use to cluster documents are learned from the
corpus in an unsupervised manner, using as input only low-
level, word-based features. Secondly, our reliance on sen-
tence types enables us to identify response patterns beyond
those identified by topic words, and hence allows us to gen-
erate multiple summaries within a single topic. Thirdly, our
system avoids the inclusion of incongruous sentences, a re-
striction that is not traditionally addressed in multi-document
summarization.

The completion of the user-driven implementation of our
system will enable comparisons with other user-driven ap-

KRAQ'05 - IJCAI workshop - July 30th 2005 38

proaches, in particular those involving information retrieval
(IR) techniques, such as [Berger and Mittal, 2000; Carmel et
al., 2000]. It will be interesting to test the effectiveness of our
system in situations where a user’s request retrieves multiple
responses that do not overlap completely. In such situations,
a traditional IR approach of simply finding the most suitable
response document will not suffice, instead the response will
need to be collated from multiple response documents.

7 Conclusion
The framework we are developing for collating help-desk re-
sponses from multiple documents is unique with respect to
previous work on question answering and user-driven sum-
marization. This is largely due to the nature of our do-
main, which is characterized by repetition and redundancy
in request-response pairs, and by the strict demands placed
by users on the relevance and coherence of a response. In ad-
dition, a help-desk corpus represents interactions with a typ-
ically large community of users, which introduces the scope
for generalizing types of interactions, while at the same time
affording the personalization of responses.

Uncertainty arises in the help-desk domain due to the pres-
ence of multiple responses that seem appropriate for a given
query. To address this problem, our system extracts as much
information for which there is support in the corpus, collating
it into a planned response; measures the cohesion and com-
pleteness of this response; and produces complete or partial
responses that have a high level of confidence.

The initial implementation of our system shows that a
small fraction of the responses in our corpus can be repre-
sented by generic model responses. We have also presented
a method for matching users’ requests with model responses.
However, in many cases a response to a user’s request will re-
quire matching the user’s request to individual sentence types,
rather than complete responses, and we are currently investi-
gating this issue.

The main application of our framework is the automation
(or semi-automation) of help-desk responses. However, we
believe that it can have other applications, such as automatic
FAQ generation and extraction of answers from newsgroup
discussions.

Acknowledgments
This research was supported in part by grant LP0347470 from
the Australian Research Council and by an endowment from
Hewlett Packard. The authors also thank HP for the exten-
sive help-desk data, and Tony Tony for assistance with the
sentence-segmentation software.

References
[Berger and Mittal, 2000] Adam Berger and Vibhu O. Mit-

tal. Query-relevant summarization using FAQs. In
ACL2000 – Proceedings of the 38th Annual Meeting of
the Association for Computational Linguistics, pages 294–
301, Hong Kong, 2000.

[Carmel et al., 2000] David Carmel, Menachem Shtalhaim,
and Aya Soffer. eResponder: Electronic question respon-
der. In CooplS ’02: Proceedings of the 7th International

Conference on Cooperative Information Systems, pages
150–161, Eilat, Israel, September 2000.

[Filatova and Hatzivassiloglou, 2004] E. Filatova and
V. Hatzivassiloglou. Event-based extractive summa-
rization. In Proceedings of ACL’04 Workshop on
Summarization, pages 104–111, Barcelona, Spain, 2004.

[Hatzivassiloglou et al., 2001] V. Hatzivassiloglou, J.L. Kla-
vans, M.L. Holcombe, R. Barzilay, M.Y. Kan, and K.R.
McKeown. SimFinder: A flexible clustering tool for
summarization. In Proceedings of the NAACL Workshop
on Automatic Summarization, Pittsburgh, Pennsylvania,
2001.

[Lin and Hovy, 2003] C.Y. Lin and E.H. Hovy. Automatic
evaluation of summaries using n-gram co-occurrence
statistics. In Proceedings of the 2003 Language Technol-
ogy Conference (HLT-NAACL 2003), Edmonton, Canada,
2003.

[Lin, 1998] Dekang Lin. Automatic retrieval and clustering
of similar words. In COLING-ACL’98 – Proceedings of
the International Conference on Computational Linguis-
tics and the Annual Meeting of the Association for Com-
putational Linguistics, pages 768–774, Montreal, Canada,
1998.

[Marom and Zukerman, 2005] Yuval Marom and Ingrid
Zukerman. Corpus-based generation of easy help-desk
responses. Technical Report 2005/166, School of Com-
puter Science and Software Engineering, Monash Univer-
sity, Clayton, Australia, 2005.

[Oliver, 1993] Jonathan J. Oliver. Decision graphs – an ex-
tension of decision trees. In Proceedings of the Fourth In-
ternational Workshop on Artificial Intelligence and Statis-
tics, pages 343–350, Fort Lauderdale, Florida, 1993.

[Radev et al., 2000] D.R. Radev, H. Jing, and M. Budzikow-
ska. Centroid-based summarization of multiple docu-
ments: sentence extraction, utility-based evaluation, and
user studies. In Proceedings of the ANLP/NAACL2000
Workshop on Summarization, Seattle, Washington, 2000.

[Salton and McGill, 1983] G. Salton and M.J. McGill. An
Introduction to Modern Information Retrieval. McGraw
Hill, 1983.

[Wallace and Boulton, 1968] C.S. Wallace and D.M. Boul-
ton. An information measure for classification. The Com-
puter Journal, 11(2):185–194, 1968.

[Wallace and Patrick, 1993] C.S. Wallace and J.D. Patrick.
Coding decision trees. Machine Learning, 11:7–22, 1993.

KRAQ'05 - IJCAI workshop - July 30th 2005 39

Breakthroughs and Challenges in Computational Semantics
Implications for Question Answering

Johan Bos
School of Informatics

University of Edinburgh
2 Buccleuch Place

Edinburgh EH8 9LW
Scotland, United Kingdom

Abstract
It’s an exciting time for computational semanticists. Recent
advances in robust parsing now give us the means to com-
pute relatively fine-grained semantic representations for texts
independent of the domain, using techniques from formal se-
mantics such as lambda calculus and underspecification, and
techniques from automated reasoning such as first-order the-
orem proving and model building. Finally we have reached
a point where we can say goodbye to shallow processing and
welcome more sophisticated techniques in semantic process-
ing. Crossovers with previous efforts in named entity recog-
nition, word sense disambiguation, and reference resolution
are bound to happen (or are already happening) in the imme-
diate future, providing a fleshed out framework for applica-
tions using computational semantics.

Given this rather optimistic view of the current state of the
field, have we finally reached a point in time where we can
announce that the problem of natural language understanding
has been successfully solved? Or are there any clouds on the
horizon?

I will address this issue by discussing two showcases for
wide-coverage computational semantics and inference: open-
domain question answering (in the context of the TREC
and CLEF campaigns), and textual entailment determina-
tion (in the context of the PASCAL challenge). I will
present a domain-independent framework for wide-coverage
natural language processing based on Combinatorial Catego-
rial Grammar (CCG) and Discourse Representation Theory
(DRT) and discuss its strong and weak points in the light of
these two applications, highlighting the use (and the lack) of
background knowledge in semantic processing. This case
study reveals (perhaps rather embarrassingly) the Achillis’
heel of computational semantics: while we might have the
right tools and the recipe for doing the job, there is still a vital
ingredient missing.

References
K. Ahn, J. Bos, S. Clark, J.R. Curran, T. Dalmas, J.L. Leid-
ner, M.B. Smillie & B. Webber (2004): Question Answering
with QED and Wee at TREC-2004. In Voorhees and Buck-
land (eds.): The Thirteenth Text REtrieval Conference, TREC
2004.

P. Blackburn & J. Bos (2005): Representation and Inference
for Natural Language. A First Course in Computational Se-
mantics. CSLI Publications.

J. Bos (2005): Towards Wide-Coverage Semantic Interpreta-
tion. Proceedings of Sixth International Workshop on Com-
putational Semantics IWCS-6. Pages 42–53.

J. Bos, S. Clark, M. Steedman, J.R. Curran & J. Hockenmaier
(2004): Wide-Coverage Semantic Representations from a
CCG Parser. Proceedings of the 20th International Confer-
ence on Computational Linguistics (COLING ’04), Geneva,
Switzerland.

J. Bos & K. Markert (2005): Combining Shallow and Deep
NLP Methods for Recognizing Textual Entailment. In: Pas-
cal, Proceedings of the First Challenge Workshop, Recogniz-
ing Textual Entailment. Pages 65–68.

H. Kamp & U. Reyle (1993): From Discourse to Logic; An
Introduction to Modeltheoretic Semantics of Natural Lan-
guage, Formal Logic and DRT. Kluwer.

M. Steedman (2001): The Syntactic Process. The MIT Press.

KRAQ'05 - IJCAI workshop - July 30th 2005 40

Toward Question Answering for Simulations

Mark G. Core, H. Chad Lane, Michael van Lent, Steve Solomon, Dave Gomboc, Paul Carpenter
The Institute for Creative Technologies, The University ofSouthern California

13274 Fiji Way, Marina del Rey, CA 90292 USA
core,lane,vanlent,solomon,gomboc,carpenter@ict.usc.edu

Abstract

The new research area of explainable artificial in-
telligence (XAI) allows users to question simulated
entities whose motivations would otherwise be hid-
den. Here, we focus on the knowledge representa-
tion issues involved in building such systems.

1 Introduction
As artificial intelligence (AI) systems in military simulations
become increasingly complex, it has been difficult for users
to understand the activities of computer-controlled entities.
Because military simulations are often used for their predic-
tive power, the AI systems that drive them must be validated
as behaving realistically and according to doctrine. Detailed
specifications are drafted for these AI systems and the result-
ing behaviors are put under heavy scrutiny. In most cases,
because the observer has no way to question AI-controlled
entities, the observer’s only recourse is watching numerous
simulation runs looking for cases where faulty reasoning re-
sults in an incorrect action.

Military simulations are also used for training, replacing
some or all of the soldiers in a live training exercise. Live
training exercises often use after action reviews (AARs), typ-
ically led by a senior officer, to identity soldier and unit
strengths and weaknesses. US Army Field Manual 25-101,
“Battle Focused Training”, states that “The OPFOR [op-
posing force] can provide valuable feedback on the train-
ing based on observations from their perspectives...the OP-
FOR can provide healthy insights on OPFOR doctrine and
plans, the unit’s action, OPFOR reactions to what the unit
did.” [Army, 1990][Appendix G] If the OPFOR are simulated
entities, these entities must be able to answer questions to
improve the student’s understanding of their actions (human
OPFORs in live exercises are available during AARs). The
simulated friendly forces also need to participate in the AAR
because otherwise human commanders may not see how their
orders translate into the behavior of units and entities.

Figure 1 (a screenshot of our system’s user interface) in-
troduces the concept of an explanation system for simulated
entities; following[van Lentet al., 2004] we use the term,
explainable artificial intelligence (XAI) system. Users select
a time point to discuss, an entity to be questioned, and the

question itself. Some of the questions are specific to the par-
ticular entity (e.g., what is your health?) while others concern
a larger group (e.g., what is your unit’s task?).

In this paper, we first discuss the challenges involved
in building such a system and then present our new mod-
ular architecture for this task and our implementation of
this architecture for the military simulation, the One Semi-
Automated Forces Objective System (OOS)[Courtemanche
and Wittman, 2002]. We highlight the central database of the
architecture as it allows us to link abstract plans to actions
recorded in the log files, meaning simulated entities can ex-
plain how they are attempting to achieve their goals.

2 XAI Challenge

Explanation systems for simulated entities have been built
previously[Johnson, 1994; van Lentet al., 2004] but were
specific to the AI systems controlling the simulated entities
in those applications, and not directly applicable to otherAI
systems. If those systems do not represent the information
necessary for explanation then the user will be limited in the
questions he can ask. Consider the example of sending a fire
team to clear a room. Once the fire team is in position outside
the room, the grenadier throws a grenade before the team en-
ters the room. This could be encoded as a procedure (the step
before entering the room is always throwing the grenade) in
which case, the system cannot explain why the grenade was
thrown.

This problem is not new; the literature review in[Swartout
and Moore, 1993] points out that researchers studying expla-
nation for expert systems fairly quickly agreed that the data
structures of the expert system had to be designed with ex-
planation in mind. Swartout and Moore advocated building
a high-level knowledge base containing facts about the do-
main and problem-solving strategies, and using an automatic
program writer to build an expert system from this specifica-
tion. The problem is more complicated for XAI because the
executable code must interface with an external simulation(a
technical challenge) and be adopted by users of the result-
ing package (a social challenge). Military users must be con-
vinced that the resulting AI controlled entities are as realistic
as the AI systems built by more traditional approaches. An-
other issue is the extra effort needed to create such a knowl-
edge base, but it may be the case that such effort is offset by

KRAQ'05 - IJCAI workshop - July 30th 2005 41

Figure 1: Interface to XAI for OOS

Figure 2: Domain Independent XAI Architecture

KRAQ'05 - IJCAI workshop - July 30th 2005 42

the increased usability of the system (e.g., the testing process
may be quicker).

Swartout and Moore went on to discuss a plan-based ap-
proach to generating explanations, an architecture designed
explicitly to facilitate:

• handling requests for clarification and elaboration

• customization based on a user model

• explanations at varying levels of detail

• natural explanations (e.g., human explanations often use
pronouns and discourse markers)

We follow this advice in proposing a decoupled approach
where the AI systems of a simulation are not changed but in-
stead a declarative representation of the domain is translated
into the knowledge representation used by the AI system; dur-
ing explanation, the entity’s actions can be reconnected tothe
original data structures. This domain representation would
contain facts about the domain, definitions of terminology,
and detailed representations of actions and problem solving
strategies.

Consider the previous example of a procedure for clearing
a room always having the “throw grenade” action before “en-
ter room”. The idea behind the procedure is that the grenade
will suppress the enemy forces inside the room. System de-
signers may not encode suppression as a precondition, but in
the declarative domain model, we can define the concept sup-
pression and include it as the goal of the throw grenade action
in the context of clearing the room. The AI system will not
use this information but it will be available during explana-
tion to answer the question “Why was a grenade thrown into
the room?”

Figure 2 shows how the declarative domain model aug-
ments the representations of an AI system. Each action type
in the log file has a unique identifier linking it to its declar-
ative representation and allowing the XAI database to recon-
struct declarative representations of all the actions logged by
the AI system. To answer user questions, the explainer selects
information from the database and presents it via natural lan-
guage and graphics displayed in the user interface.

3 XAI for OOS
Our first instantiation of the XAI architecture connects to the
One Semi-Automated Forces Objective System (OOS), an
entity based simulation system being developed by the U.S.
Army [Courtemanche and Wittman, 2002]. XAI for OOS was
a challenging project because of a short development time
(2 months) and the fact that the target simulation was still a
work-in-progress (the official release is in 2006). Interfacing
early with a simulation or training aid is important because
decisions by the developers of such programs can deeply im-
pact the ability of an XAI system to explain entity actions and
we plan to work with the OOS team to overcome the limita-
tions discussed below.

The OOS team’s approach to entity simulation is to encode
declarative action representations in XML and use Java code
to actually implement the described action. Our version of
OOS only had the Java code (the XML descriptions were not

ready) and we had to enter action descriptions by hand into
the XAI database (a relational database).

An additional source of information is the simulation sce-
nario which contains the static information associated with
the simulated world, and the mission table. The static in-
formation defines all the entities including their rank, unit,
and weapons carried. The mission table contains a series
of unit tasks and their parameters (e.g., unit task = clear
room(agent,room), agent = fireteam 1, room = east room of
the warehouse). During the simulation, entities perform indi-
vidual tasks in service of these unit tasks, and log files record
the states of these entities (e.g., when they start and end tasks)
and information about any weapon fire events. After the sim-
ulation is complete, XAI loads the log files into its relational
database and the query generator searches for “interesting”
time points. The time menu on XAI’s interface is sensitive to
the current entity (i.e., it displays the interesting time points
for that entity). For each entity, the query generator identifies
interesting times, defined as when the entity fired its weapon
and the start, end, and mid points of entity tasks. This defini-
tion of interesting times is a placeholder; when deploying an
XAI system, feedback from subject matter experts is vital for
defining what questions the system should answer and what
events are interesting.

After this initialization process is complete, the user can
investigate the results of the simulation using the interface
shown in figure 1. The screenshot shows 12 of the 16 ques-
tions supported by the system and includes questions about
the entities’ state (e.g., “What is your health/damage status”),
questions about the scenario (e.g., “Who are the other mem-
bers of your unit”), and questions about tasks. The user can
ask for descriptions of the current individual (primitive)task,
the current group task, parameters of the task, or how, in gen-
eral, to perform the task.

Although this list of questions reflects our research into
questions asked during military after action reviews, theyare
limited to information directly encoded in the log files. In our
current architecture, the query manager executes queries to
retrieve answers to questions. In future work, we will replace
this component with a general purpose XAI reasoner capable
of answering the more complicated questions necessary for
military training purposes. Another influence on what ques-
tions can be answered is the completeness of the simulator’s
log files. In [Gombocet al., 2005] we discuss requirements
for such log files and how the requirements impact what ques-
tions can be answered.

The question list is context sensitive, and all 16 questions
are not always available. If the query generator determines
that there was no weapon fire event at the current time, then
weapon fire questions (13-15) will be removed from the list.
The question list is also sensitive to the dialogue history as
the request, “Can you give me more detail?”, can only be
made when the previous turn described the current unit task,
or described how to perform a unit task; currently our system
is only able to elaborate on these two answers.

The interface to XAI for OOS is controlled by a servlet en-
gine that communicates via XML with the explainer. Users
select an entity and a time point from the menus on the bot-
tom of the screen, and then select a question from the same

KRAQ'05 - IJCAI workshop - July 30th 2005 43

menu area. The middle frame of the page contains a dialogue
history (all the questions asked by the user and the system
responses).

Currently, the system starts by talking to the first entity of
the first unit (in our test scenario, this is “Private Morphy”) as
shown in the screenshot. 2:16 is the first significant time for
Morphy as he starts his task of clearing the east room of the
post office. The first time a user talks to an entity, the dialogue
manager creates an introduction (such as the one shown in the
first line of the dialogue). Since the user has never spoken to
Morphy, he introduces himself by giving his unit role, and
since the user has not spoken to any other members of Blue
Fireteam 1, Morphy describes the unit’s task.

The process to create this introduction is the same process
as answering the questions “what is your unit role?” and
“what is your unit’s task”. The dialogue manager uses the
query generator to retrieve the relevant information from
the database and sends it to the natural language genera-
tion (NLG) module. Because of development time con-
straints, NLG was implemented with natural language tem-
plates (written in XSLT); slots in the templates are filled
with information from the database. NLG formats names and
times so that they appear as links in the user interface (click-
ing on them changes the current entity or time). We plan to
use this facility in future work to encode formatting such as
bulleted lists.

4 Discussion
Rather than simply writing an XAI module that only worked
for its target AI system and simulator, we used our generic
and modular architecture for XAI systems in building XAI
for OOS. In a short time, with this new architecture, we
have been able to exceed the capabilities of our predecessor
system, XAI for Full Spectrum Command[van Lentet al.,
2004]. Because task information is linked to individual ac-
tions recorded in the log files, XAI for OOS can explain the
generic method for achieving its current task as well as dis-
cussing the current parameters of this task.

The modularity of the system is important to allow interop-
erability with different AI systems and different simulators.
As a portability test, we modified our system to accept log
files from Full Spectrum Command (FSC). The OOS scenario
that we have been using (light infantry) is very similar to the
domain of FSC and we focused on supporting the questions
that made sense in both domains. The major changes needed
were changing the database schema to match the new format,
updating the query manager so it could find the needed infor-
mation in this new format, and changes to NLG to support
new actions and objects.

The modularity of the system will make it easier to im-
prove. For example, we plan to extend the dialogue manager
to maintain a more extensive dialogue history. This code can
be rewritten or replaced by a dialogue management toolkit
without disturbing the other parts of the system. Even the user
interface is simply a module of the system, and another inter-
face supporting the explainer’s XML communication format
could replace our current interface with no changes to the rest
of the system.

The modularity of our XAI architecture will also enable it
to integrate with external software. Currently, with respect to
training, XAI is best classified as a discovery system where
users investigate the events of the simulation with no external
direction (i.e., learning is left entirely up to the student). We
are currently designing an intelligent tutoring module to pro-
vide the pedagogical presence necessary for effective train-
ing. The tutor could use the XAI system to illustrate an im-
portant lesson, or direct the student to use XAI to investigate
an interesting time point, among other strategies.

A topic for future work is defining the general relationship
between question answering systems and tutoring. One possi-
bility is to teach the students about the QA system itself (how
to use it). We are developing an investigation model that en-
codes the detective skills that an expert XAI user would pos-
sess. This model will be similar to troubleshooting guides
for electronics (e.g., try to isolate the component causingthe
problem, then investigate the component in detail searching
for faults). We can imagine developing investigation models
for other QA tasks such as finding relevant research papers,
or bargain shopping for airfares.

Acknowledgments
Thanks to Milton Rosenberg, William Swartout, and David
Traum for their guidance and support. Note, the project
described here has been sponsored by the U.S. Army Re-
search, Development, and Engineering Command (RDE-
COM). Statements and opinions expressed do not necessarily
reflect the position or the policy of the U.S. Government, and
no official endorsement should be inferred.

References
[Army, 1990] FM 25-101: Battle Focused Training. Head-

quarters Department of the Army. Washington D.C., 1990.
[Courtemanche and Wittman, 2002] A. Courtemanche and

R. Wittman. OneSAF: A product-line approach for a next-
generation CGF. InProc. of the Eleventh SIW Conference
on Computer-Generated Forces and Behavioral Represen-
tations, pages 349–361, 2002.

[Gombocet al., 2005] D. Gomboc, S. Solomon, M. G. Core,
H. C. Lane, and M. van Lent. Augmenting behavior mod-
els to support automated explanation and tutoring. InProc.
of the Fourteenth Conference on Behavior Representation
in Modeling and Simulation, 2005.

[Johnson, 1994] W. L. Johnson. Agents that explain their
own actions. InProc. of the Fourth Conference on Com-
puter Generated Forces and Behavioral Representation,
Orlando, FL, 1994.

[Swartout and Moore, 1993] W. R. Swartout and J. D.
Moore. Explanation in second generation expert systems.
In J.M. David, J. P. Krivine, and R. Simmons, editors,Sec-
ond Generation Expert Systems. Springer-Verlag, 1993.

[van Lentet al., 2004] M. van Lent, W. Fisher, and M. Man-
cuso. An explainable artificial intelligence system for
small-unit tactical behavior. InProc. of the Sixteenth
Conference on Innovative Applications of Artificial Intel-
ligence Conference, Menlo Park, CA, 2004. AAAI Press.

KRAQ'05 - IJCAI workshop - July 30th 2005 44

A Question-Answering System for Portuguese

Carlos A. Prolo

PUCRS
Porto Alegre, Brazil

prolo@inf.pucrs.br

Paulo Quaresma
Irene Rodrigues
Pedro Salgueiro

Universidade déEvora
Évora, Portugal

{pq,ipr,pds }@di,uevora.pt

Renata Vieira

UNISINOS
São Leopoldo, Brazil

renata@exatas.unisinos.br

CONTENT AREAS:
Methodologies for Intelligently Answering Questions

Knowledge Representation and Integration
Language Processing

Abstract

In this paper we describe a Q&A system for Por-
tuguese. The core of the system is a unification-
based process that tries to fill in the gaps in the
questions with the facts obtained from any given
corpus with sentences of the language.

1 Introduction
This paper reports on an ongoing project to build a question-
and-answer system for Portuguese. An initial version of this
system was used in the Q&A task of the CLEF04[Peters and
Borri, 2004] with encouraging results, particularly the preci-
sion, as reported later in the paper.

The core of the approach is the unification of the open pred-
icate expressed by the question asked and the closed predi-
cates conveyed by the sentences in the corpus. This is done
using Prolog. Consider the sentences in (1) and (2). The first
line is the original version in Portuguese. The second line has
the English equivalent, and the third line shows it with atrace
(theε) at the position the argument would normally be in the
declarative form.1

(1) Quem matou Odete Roitman ?
Who killed Odete Roitman ?
Whoi εi killed Odete Roitman ?

(2) O que Cristoṽao Colombo descobriu ?
What (did) Cristoṽao Colombo discover ?
Whati (did) Cristoṽao Colombo discoverεi ?

The question can then be written in a logical form as an
open predicate – a predicate with unbound variables, – with
the variable at the position corresponding to the trace, which
is the missing argument being asked, as shown in (3) and (4),
whereW stands for the variable.

1See for instance[Haegeman, 1994] for the linguistic theories of
wh-movement.

(3) kill (W , Odete Roitman)

(4) discover(Cristoṽao Colombo,W)

Now suppose we find the sentence in (5) in the corpus,
whose associated closed predicate is in (6). We can unify
the predicate with the one for sentence (1), obtainingW =
Laura which is the answer we are looking for.

(5) Laura killed Odete Roitman .

(6) kill (Laura , Odete Roitman)

2 System description
We describe in this section the main components used within
the approach.

2.1 The parser
We use the Eckhard Bick’s parser Palavras[Bick, 2000] to
find the syntactic structure for both questions and corpus sen-
tences. The parser provides rich morpho-syntactic informa-
tion on both the lexical and constituent levels. For instance,
upon finding the main verb of a clause the parser provides us
with its lemma, which is used as the name of the predicate,
allowing for independence of the particular verbal form used
in each sentence. This is essential, especially in a morpho-
logically rich language such as Portuguese.

The parser does not mark the position for empty arguments.
However, it provides grammatical function of the constituents
and assigns tags to thewh expressions, such asSUBJ for sub-
ject extraction,ACC for direct object extraction, and similar
ones for prepositional object and adverbial adjunct. That al-
lows for a good approximation of a unique predicate argu-
ment order for each verb. Of course, we have to rely on cor-
rect resolution of PP attachment (but see section 3), and there
might be problems with verbs that take optional arguments.

2.2 Sentence Representation
A semantic representation (sr) for a text is given as a set of
predicates with identification of each recognized entity. The
format is as exemplified below in (8) for the sentence in (7).
The example also shows how sub-constituents are treated.

KRAQ'05 - IJCAI workshop - July 30th 2005 45

(7) Um patologista defendeu que Jimi Hendrix morreu de
asfixia aṕos ter ingeridóalcool e uma dose excessiva de
barbit́uricos.
(A pathologist defended that Jimmy Hendrix died of
asphyxia after having ingested alcohol and an excessive
dose of barbiturates.)

(8) sr (entities:[
A: indefinite, masc, sing,
B: definite, masc/fem, sing,
C: definite, fem, sing,
D: definite, masc, sing,
E: indefinite, fem, sing],

predicates:[
pathologist (A),
defend (A,B),
name (B, JimmyHendrix),
die (B),
rel (of, B, C),
asphyxia (C),
rel (after, C, D)
ingest (D)
alcohol (D)
dose (D)
excessive (D)
rel (of, D, E)
barbiturates (E)])

Each entity in the text is introduced as a variable over
which we can predicate. The attributes regarding definiteness,
gender, number, etc., obtained from the parser will help, for
instance, to restrict the possible matchings (e.g. masculine
vs. feminine). This is a very strong feature of Portuguese as
a morphologically rich language.

Notice that prepositional phrases are conveyed asrel pred-
icates since at this level we do not know exactly what seman-
tic relation they play. We will come back to this issue ahead
when we talk about the ontology.

For questions a similar representation is built, in which the
wh-pronoun – or similar word that stands for the type of the
answer – will be specially marked as the initially unbound
variable whose value we will be interested after unification
with the semantic representation of any given text. (9) and
(10) provide an example for a very simple question.

(9) Quem morreu ?
(Who died ?)

(10) sr (entities:[
var F: interrog(who), masc/fem, sing/plur],

predicates:[
die (F)])

When the question is unified with (8),F unifies withB,
and we know that the answer is Jimmy Hendrix.

2.3 The Ontology
So far we have presented examples for which the answers can
be derived immediately from the semantic representation that
resembles the constituent structure of the sentences. Often
this is not so straightforward. An ontology was integrated into
the system using the language OWL and ISCO[Abreu, 2001],

containing general rules relating concepts, which when ap-
plied to the initial formulas allows for it to be turned into a
more general and informative form.

The ontology was created using a semi-automatic ap-
proach. First, a top level ontology was defined, with generic
concepts, such as, actions and entities. Then, a simple low-
level ontology of domain concepts is automatically extracted
from the documents and merged with the top-level ontology.
The automatic extraction of concepts is based on the tree-like
syntactic structure and it detects and extracts triples of verb-
subject-object. These triples are then related using semantic
information supplied by the parser Palavras and merged with
the top-level ontology. A more detailed description of this
process can be found at[Saias and Quaresma, 2005]. The
ontology was useful to derive some logical rules to deal with
the generic relationrel. If we have classes such aspersonand
thing, which are related in some other class, such asown, we
derive a rule that says that if a person is in a relationof with a
thing, this relation may be of typeown, as illustrated below in
Figure 1. This corresponds to the semantic/pragmatic module
of the system.

class person.
name N;
...

class thing.
...

class own:
person A;
thing B.

own(A,B) <- rel(of, B, A),
person(A),
thing(B).

Figure 1: Example of Logical Rules of the Ontology

A typical case is the handling of the predicaterel that arises
from the prepositional phrases. From the noun phrase“O
gato do Manuel”(“the cat of Manuel”→ “Manuel’s cat”),
the system first generates a predicaterel (of, A, B)which is
then converted intoowns (B, A)by use of the ontology rules
that know about the use of the prepositionof to express pos-
session of animals by persons.

As an additional example, consider the question in (11).
The system was able to correctly answer it, unifying it with
(8), only because the interrogative pronouncomo(how) was
turned into an“of” relation modifying the verb, as shown in
(12) (cf. “Of what did Jimmy Hendrix die ?”).

(11) Como morreu Jimi Hendrix ?
How did-die Jimmy Hendrix ?

(12) sr (entities:[
F: definite, masc/fem, sing
var G: interrog(what), masc, sing],

predicates:[
die (F)

KRAQ'05 - IJCAI workshop - July 30th 2005 46

name (F, JimmyHendrix)
rel (of, F, G)])

This approach results in an overgeneration of rules and thus
many alternative interpretations forrel relations. This is not
however a problem for the final goal of getting the correct
answer for questions. Indeed it is part of the solution. The
key point here is that the same piece of information can be
expressed in many different ways and so can the questions.
By providing logical predicates one for each interpretation,
we improve our chances of having one of them unified and
hence obtaining an answer.

As simple as it may be right now, the ontology has proven
very useful for answering the questions. However, it is still a
major issue since it is not powerful enough in some cases and
should be substantially improved. A major point is nominal-
ization. The nominal“A morte do Pedro” (“Peter’s death”)
carries the information that Peter died. Relative clauses also
indirectly convey information about the NP head. The noun
phrase“The apartment bought by John”presupposes that
John bought the apartment referred to by the NP. Apposi-
tives, pervasive in newspaper articles, carry an equative re-
lation between nominals. Named entity recognition – distin-
guishing persons, locations, etc. – is important, but also the
understanding of which common nouns in a question trigger
the search for which entities (e.g“Which city” means we are
looking for a place). The improvement of the ontology is cur-
rently a major issue in the project.

3 The tricks of the trade
In this section we cover a few selected issues related to com-
plex syntactic or semantic aspects of language which are hard
to solve in a principled approach, but which are seen as very
relevant to improve the effectiveness of the system. They are
“tricks”, because they do not handle the issues in a principled
way. However, they are intended to improve the quality of the
answers approximately as if they were handled properly in a
principled way.

3.1 Reciprocal Verbs and Alternations
Many verbs can have their arguments switched over, roughly
preserving the meaning, such as in (13)[Levin, 1993, p. 36].
If we just proceed as we have shown before, when these verbs
appear in a question, our chance of having an appropriate sen-
tence to match it immediately drops to 50%, since the order
of the arguments in both the question and the corpus sentence
is random. The trick here is to replicate the predicate in the
question, with the arguments switched in the second occur-
rence, in anORconstruction.
(13) Maria casou com Pedro.

(Mary married Peter.)
Pedro casou com Maria.
(Peter married Mary.)

Among the many verbs that can take this alternation is the
verb “ser” in its equative usage – the equativebe,2 which
appears extremely often in questions.

2Portuguese already has two different verbs forbe – “ser” and
“estar” , but still “ser” can be used in either equative or predicative

Currently we do not distinguish verbs that can take the al-
ternation from those that cannot. Neither we distinguish the
equative from the predicative construction. We replicate the
predicates for the main verb on all questions. Whenever this
is inappropriate it is still unlikely to cause a problem since the
alternate predication will not succeed to unify. Try to find an
answer for“Who died of Jimmy Hendrix?”

A principled account of this kind of phenomena would im-
ply to have a good verb ontology since there are hundreds
of other kinds of verb alternations(e.g., see[Levin, 1993] for
English), perhaps none of them, individually, nearly as rele-
vant to our task as the one we just covered, but that as a group
would make a difference. Another issue is that even recipro-
cality has other manifestations, depending on particular verb
groups (cf.“Mary and John married.”)

3.2 Passives and Verb Features
We have not conduced a thorough study of the relevance of
particular verb features to the quality of the answers. We
know about the importance of agreement features – number,
person and gender, – to help determining the features of ar-
guments when their morphology is ambiguous. But this is
already accounted for by Bick’s parser.

An important feature is the passive voice, which inverts
the order of the arguments and should be considered when
generating the predicates in the semantic representation. It
is pervasive in language, but in particular, it tends to appear
in questions when one does not want to mention the agent of
some action, as in“When was Kennedy assassinated?”We
could use the information from the parser to do the argument
inversion. However, currently this is already taken into ac-
count by the overgeneration of the trick for reciprocality.

At first glance, other syntactic features of the verb, such
as tense, mood, or aspect, do not appear to be so relevant for
the effectiveness of the system, but this deserves more careful
evaluation.

3.3 Prepositional Attachment
Current parsers are notoriously bad at correctly attaching
prepositional phrases to their heads. Bick’s parser tends to
attach the PPs to the lower possible candidate – which is sta-
tistically the most likely place. The trick here is to make
available a duplicate, alternativerel predicate for which the
attachment is higher. Consider the sentence in (14). Because
the parser wrongly attaches the PP to the lower nounleukemia
instead of to the verbdie the sentence does not help to answer
“When did John die?” By providing an alternative attach-
ment to the verb the answer comes straightforwardly.

(14) Paulo morreu de leucemia in 1956.
(Paul died of leukemia in 1956.)

The question remains of how much can we be hurt if our
hypothesis of higher attachment is plainly wrong. Although
we have not made a precise statistical analysis, empirical ob-
servation has shown that this is very unlikely to cause trouble
due to the usually very distinct nature of the attachment can-
didate heads. That is, the wrong attachment alternative will
never succeed unifying.

constructions.

KRAQ'05 - IJCAI workshop - July 30th 2005 47

3.4 Parts-of-Speech Mistakes
We realized that the parser makes occasional mistakes in the
parts-of-speech. When this happens for a sentence of the cor-
pus even one that carries the answer for the question, this can
often be overcome, since the answer may also be contained
in other sentences of the corpus. However when the mistake
happens at the question, then it its highly destructive. In order
to overcome this problem we may use the fact that the initial
morphological analysis provides us with all the possible parts
of the speech of each word. Here the trick is to allow for the
creation of multiple alternatives for each of the possible com-
bination of parts of speech. The“combinatorial explosion”
is not a problem due to the usually small size of the questions.

4 Evaluation
This system has been used to compete in the question-
answering track of the CLEF 2004[Peters and Borri, 2004]
and got the best score among the three Portuguese runs and
the 7th global best score (among 57 runs)[Quaresmaet al.,
2004].

Of the 199 questions3 it found an answer for 72, of which
47 (or 65%) were correct, 18 (or 25%) were inexact and only
7 were wrong. However for the remaining 127 for which it
gave no answer, only 9 did not really have an answer in the
corpus provided in the track. That is, the system was, in a
sense, extremely conservative in giving an answer. But when
it did, it generally did well.

Two main reasons contributed to the high number of miss-
ing answers. One is that the inference process is based in
Prolog and, due to the computational complexity, it was not
possible to make inferences over the complete knowledge
base built from the analysis of the documents. So the doc-
uments had to be pre-selected from the full collection using
an extension of the SINO engine[Greenleafet al., 1997] that
did not perform to content, giving very low recall values. So
for many questions the documents that contained the answer
were not even taken into account in the inference process.

At present, changes are being made to the Prolog inter-
preter allowing inferences over the full knowledge base.

The second main reason for the low number of answers
given can be generally attributed to the ontology. The infer-
ence process relies heavily on the ontology. The tricks in the
previous section are nothing but practical solutions to tasks
that belong to the ontology. (Only the PP attachment trick
was used in the CLEF contest.)

5 Conclusions
We presented a question answering system, that integrates:
parsing; semantic representation and inference using ontol-
ogy. The reasonably high precision is a strong characteris-
tic of the system, and progress has been made to drastically
improve the recall without neglecting precision. In particu-
lar we have to improve the following aspects. Efficiency in
parsing is seen as a must , together with a good indexing sys-
tem, so that we can have timely access to the documents to
be processed. Improvement of the ontology is being pursued,

31 of the 200 questions was discarded by the judges

integrated with practical solutions, to allow for the successful
recover of the answer.

Acknowledgments
This work was partially supported by the funding agencies of
Portugal and Brazil, GRICES, ICCTI, CAPES and CNPq.

References
[Abreu, 2001] Salvador Abreu. Isco: A practical language

for heterogeneous information system construction. In
Proceedings of INAP’01, Tokyo, Japan, 2001.

[Bick, 2000] E. Bick. The Parsing System ”Palavras”. Auto-
matic Grammatical Analysis of Portuguese in a Constraint
Grammar Framework. Aarhus University Press, 2000.

[Greenleafet al., 1997] G. Greenleaf, A. Mowbray, and
G. King. Law on the net via austlii - 14 m hypertext links
can’t be right? InIn Information Online and On Disk’97
Conference, Sydney, 1997.

[Haegeman, 1994] Liliane Haegeman.Introduction to Gov-
ernment and Binding Theory. Blackwell, Cambridge,
USA, 1994.

[Levin, 1993] Beth Levin.English verb classes and alterna-
tions. University of Chicago Press, Chicago, 1993.

[Peters and Borri, 2004] C. Peters and F. Borri, editors.
Working Notes for the CLEF 2004 Workshop. Bath, UK,
2004.

[Quaresmaet al., 2004] Paulo Quaresma, Luis Quintano,
Irene Rodrigues, and Pedro Salgueiro. The university
of Évora approach to qa@clef-2004. In Carol Peters
and Francesca Borri, editors,Question-Answering Track
of the Cross Language Evaluation Forum, pages 403–
412, Bath, UK, 2004. Istituto di Scienza e Tecnologie
dell’Informazione, Consiglio Nazionale delle Richerche,
ISTI-CNR, Italy.

[Saias and Quaresma, 2005] Jośe Saias and Paulo Quaresma.
A methodology to create legal ontologies in a logic pro-
gramming information retrieval system.Law and the Se-
mantic Web, 2005.To appear.

KRAQ'05 - IJCAI workshop - July 30th 2005 48

Semantic Knowledge in Question Answering Systems

Vincent Barbier, Brigitte Grau, Anne-Laure Ligozat, Isabelle Robba and Anne Vilnat
LIMSI-CNRS, BP 133

91403 Orsay cedex
France

e-mail : FirstName.Name@limsi.fr

Abstract

QA systems need semantic knowledge to find in
documents variations of the question terms. They
benefit from the use of knowledge resources such
as synonym dictionaries or ontologies like Word-
Net. Our goal here is to study to which extent vari-
ations are needed and to determine what kinds of
variations are useful or necessary for these systems.
This study is based on different corpora in which
we analyze semantic term variations, based on ref-
erence sets of possible variations.

1 Introduction
Most QA systems are composed of three main components.
First, question analysis extracts terms from the question and
finds the expected type of the answer. Then, a search engine
searches the collection for documents. To this end, one or
more successive requests are built with the question terms,
and possibly with term variations. Finally, answers are se-
lected following relevance criteria taking into account syntax
and semantics. To find relevant documents, QA systems have
to identify variations of question terms in these documents.

Our goal in this paper is to study to which extent variations
are needed and to determine what kinds of variations are use-
ful or necessary for these systems.

To this end, we present on the one hand an evaluation of
our own strategy. Our QA system, working both on French
and English languages, takes into account semantic variations
of simple or composed terms of the question in order to cut
down the set of documents retrieved by the search engine; this
paper presents an evaluation of how relevant this strategy is,
focusing on the French system.

On the other hand, we show to which point a QA system is
able to find answers without requiring any semantic resource
and to which extent results would be enhanced by such re-
sources. This study is based on different corpora, in which
we study semantic term variations. Two corpora come from
the evaluation on French: one is made of all the correct an-
swers given by the participants, the other is our set of answers.
The last corpus is an automatically built corpus of correct and
incorrect passages from TREC-11 questions.

After a state of the art on QA systems, we present our
system FRASQUES, then we describe the studies we made

on different corpora. We also describe the dedicated corpus
we constituted to prevent us from the bias introduced by the
use of the participants’ results; finally we detail the variations
present in this corpus, thanks to Wordnet ontology.

2 Semantic knowledge for selecting
documents in QA systems

In order to improve document selection in QA systems, sev-
eral strategies can be conceived. They consist in using se-
mantic knowledge, present in thesauri or lexicons, at different
stages of the system: i) for elaborating the query given to the
search engine; ii) on the results of the search engine, for se-
lecting the best documents or extracting small passages. QA
systems generally make use of thesauri by selecting words
close to question words according to semantic or lexical rela-
tions, such as synonymy, hyperonymy and hyponymy.

In the first strategy, namely query elaboration, a first prob-
lem consists in choosing the right keywords in the question;
then a second problem is raised by the search of related
words. Keyword selection is often based on the morpho-
syntactic category of question words. They can also be
weighted or considered differently in the query according to
pre-established rules or to their weights in a reference corpus.

In addition to keyword selection, it can be interesting to
consider their linguistic variations in order to take into ac-
count some lexical distances between questions and answer-
sentences. [Moldovan et al., 2003] generate morphologic,
lexical and semantic variations of question keywords from
WordNet ([Fellbaum, 1998]), and introduce them progres-
sively in the queries when their system do not return enough
answers. [Yang and Chua, 2002]’s system merges two kinds
of knowledge sources, the Web and WordNet, for extending
queries: after questioning the Web, they keep those words
that are the most correlated to question words and consider
them as query terms since they seem relevant in the question
context. They also add some related words found in WordNet.

[Ittycheriah et al., 2001] have tested different document re-
trieval techniques, with and without query expansion. Apply-
ing expansion mechanisms as filtering criteria for selecting
answers in retrieved documents gives better results than ap-
plying them for expanding requests. We also chose this solu-
tion in our systems, FRASQUES (for French language) and
QALC (for English language).

KRAQ'05 - IJCAI workshop - July 30th 2005 49

3 FRASQUES System

FRASQUES roughly follows the same principles than
QALC, our English QA system, even if they slightly differ
in their realisation. Both are made of four main modules, col-
ored with gray in Figure 1.

Question Analysis Lemmatized documents

Document Processing

Best documents selection
Named entities tagging

Terms and Variants Recognition

Tagged Documents

 Document Retrieval

Focus
Answer Expected Type

Question Category

Question

Boolean
Request

Terms Documents

Sentence processing
Sentence Weighting
Answer Extraction

Answer

Figure 1: FRASQUES system

Question analysis proceeds in two steps. First, some infor-
mation is determined such as the expected type of the answer,
when this type belongs to our named entity list. Second, the
lists of synonyms for non empty words of the question are
built (this point is detailed in section 4.1).

The search engine, Lucene1, is a boolean engine. To in-
terrogate the French collection, Lucene is given a set of re-
quests built from the non empty words of the questions. If
no documents are retrieved (or a number smaller than a given
threshold), the collection is searched again with fewer terms
(see details section 4.3).

The documents retrieved by Lucene are re-indexed by Fastr
([Jacquemin, 1999]) in order to recognize morphological,
syntactic or semantic variants of simple or composed terms
of the question. These terms are weighted, and thus docu-
ments are weighted in turn. Documents are then re-ordered
and a sub-set of them is considered. The named entities tag-
ging module is then applied to these documents. The final
module is in charge of extracting the answer from weighted
sentences. The process differs depending on the fact that the
question expects an answer which is or is not a named entity.

1http://jakarta.apache.org/lucene/docs/index.html

4 Analysis of the FRASQUES system
The corpora we analyze in this section come from the EQueR
evaluation campaign. They are composed of the correct pas-
sages (250 characters maximum) returned by the participants,
plus the results of FRASQUES.

4.1 The questions
For each question, FRASQUES question analysis module de-
termines several kinds of information, among which three
sets are more thoroughly studied in this article: i) the set
of non-empty words of the question, ii) the set of their syn-
onyms extracted from Fastr and iii) the set of their synonyms
extracted from EuroWordNet.

In EQueR, the main task consisted of 500 questions.
Among these, 33 did not have any Fastr synonym, and 73
did not have any EuroWordNet synonym. The average num-
ber of words per question was 5.6 while the average of Fastr
synonyms was 12.8, which is relatively high, especially since
among the 500 questions, there were 592 proper names,
which rarely accept synonyms. The average of EuroWordNet
synonyms per question was 7.1. Thus, there are nearly twice
as many Fastr synonyms as EuroWordNet synonyms, which
can be explained by the low coverage of EuroWordNet.

4.2 Quantitative analysis of participants correct
passages

The correct passages given by the participants constitute an
interesting corpus to analyze. To gauge the benefits brought
by knowledge sources such as synonyms, we calculated the
presence rate of synonyms in correct passages.

The corpus is composed of 2213 passages, that is an aver-
age of 4.7 passages per question (only 30 questions have not
been answered). Among these passages, 82% do not contain
any Fastr synonym, and 88% do not contain any EuroWord-
Net synonym. Only the words of the question obtain an sig-
nificant rate as shown Table 1, containing the average rate of
question words or synonyms per question.

Question words 60.4
Question words as Fastr synonyms 3.6
Question words as EuroWordNet synonyms 2.7

Table 1: Question words and synonyms in correct passages

Several reasons explain those rather low rates of synonyms
in the corpus. First, the synonym bases are not the ones the
other participants use, moreover few of them take into ac-
count such knowledge. Second, in EQueR, a lot of correct
answers could be found with the words of the question. It
seems (it is also true in TREC campaigns) that there is often
at least one formulation close to the question, which is prob-
ably due to the large amount of documents (1.5 gigabytes).

4.3 FRASQUES answers
The set of documents returned by FRASQUES is also inter-
esting to exploit. This corpus can be divided into two parts:
the documents returned by the search engine Lucene, and the
documents selected and ordered after indexation by Fastr. On

KRAQ'05 - IJCAI workshop - July 30th 2005 50

the basis of these two corpora, we investigated the influence
of our use of semantic knowledge on the passage selection at
the different stages of the question answering process.

When querying the search engine, we favour documents
containing all words contained in the question. If no such
document exists, or if there are too few of them, the con-
straints on the query are relaxed by omitting some of the
words in the question. First, a query composed of all the non-
empty words of the question if formed. If a threshold number
of documents (fixed at 200), is not reached, a new query is
constructed which contains the focus of the question, its main
verb and its proper names. Then relaxation consists in sup-
pressing the verb, and constructing different queries for each
proper name. When we take off words, their variants may still
be found in the returned documents.

For the EQueR campaign, we ran the system twice, in or-
der to test different document selection strategies. For the
first run, all proper names were used without considering the
threshold of 200 documents; for the second run, we checked
the number of documents after each query.

To evaluate our strategy, we listed all the various short an-
swers, in order to have a set of admissible template answers
as large as possible. We then evaluated our corpus of doc-
uments and the passages returned with respect to these an-
swers. For each run of our system, we counted the number of
occurrences of template answers in our corpus, after the first
two steps of our question answering process, namely docu-
ment selection by the search engine, and selection by Fastr.

The search engine returns documents containing a template
answer for only 73 to 76 % of the questions. This can be
explained by several factors : imprecision in the choice of the
keywords of the question, which are selected only due to their
morpho-syntactic tagging, errors of lemmatization, problems
of anaphor and so on.

The selection of 50 documents after indexing by Fastr does
not entail a decrease in the number of correct documents. The
first run makes use of synonyms only for multiterms, while
the second run also searches synonyms of monoterms. The
second run could be expected to have a better recall, but this
is not the case. This can be explained by the high degree
of similarity between the questions and some of their correct
sentences, and also by the noise introduced by searching “in-
correct” synonyms.

Multiterm semantic variants have been found by Fastr in
40 questions (9% of the questions). These variations en-
abled the system to link for example the phrases “transfert
d’animal” and “transport des animaux”, or “avocat de M.” and
“défenseurs de M.”. The synonyms used in these cases seem
more relevant than those used for recognition of monoterm
variation, which can be explained by the fact that monoterms
lack a context which could enable to choose between all the
possible synonyms. Multiterm variants here prove their inter-
est, and it could be useful to favour them in other steps of the
question answering process, in order to reiterate document
retrieval with found synonyms.

We also carried out evaluation experiments to determine
how relevant it is to use the words of the question when look-
ing for the answer. This is summarized in Table 2. For each
sentence returned by our system, we counted the number of

Correct passages All passages
Words of the question 69.7% 57.3%
Fastr synonyms 4.9% 4.3%
EuroWordNet synonyms 4.0% 3.2%

Table 2: Question words and their synonyms in the extracts
returned by FRASQUES

words of the question present, as well as the number of Fastr
and EuroWordNet synonyms. Then we made similar exper-
iments where we took only in consideration those sentences
which were judged correct: those have higher scores in terms
of occurrences of words of the question and of synonyms,
which justifies our current approach of passage selection.

The rates of synonyms in the sentences we returned corre-
spond to those found in the corpus of answers of all partici-
pants. Like the corpus of participants, our corpus contains a
high number of sentences containing no synonym : between
78 and 80%, depending on the origin of the synonyms and of
the sentences. This very low occurence rate of synonyms is
probably due to the lexical proximity between the questions
and the answering sentences, as it was foreseeable.

5 Extension to other variations
In order to study the reliability of more extended variations,
such as those given by WordNet relations, we have built semi-
automatically a corpus of answers. Questions are taken from
TREC11 QA evaluation and answers are extracted from the
TREC11 Aquaint collection. The corpus is composed of 123
questions and 1066 pertinent answer passages (corresponding
to a paragraph or 3 sentences), which makes a mean of 8.7
passages per question.

For each question, we collected a set of pertinent and non-
pertinent paragraphs. At first, passage pertinence is automati-
cally evaluated thanks to an answer pattern, which is a regular
expression. But this method is quite noisy: among the pas-
sages considered as relevant, only one of three passages is
really pertinent. This method reduces dramatically the hu-
man work, but a manual validation is still required. Now, we
detail the method used to constitute the corpus.

5.1 Request and Corpus Filtering
In most system, query variation is limited to synonym or
morphological variations which makes difficult to study more
complex variations. Our aim is to study the various possible
variations of each term of a question with as little bias as pos-
sible. In this purpose we decided to collect the answers by
building one specific query for each studied question term.

For each query, we omit one term of the question, which
will be the studied term. This term is not represented, neither
by its actual form nor by a variation. Thus a variation of this
term should not be favoured over another one.

The query is a conjunction of disjunction of terms. Each
disjunction of terms represents a term of the question and is a
set of variations of this term obtained thanks to WordNet.

The allowed variations are synonyms, plus the most fre-
quent word of all synsets at a distance of two WordNet rela-

KRAQ'05 - IJCAI workshop - July 30th 2005 51

tions or less. The distance of the variations is reduced in or-
der to prevent the generated query to bring too noise, which
is already important. Last, the less significant terms of the
question are not used in the queries.

Named Entities are considered to be better filters than com-
mon nouns and other grammatical categories. For the other
terms, the term significantness is estimated by human judg-
ment. This human ranking permits the system to automati-
cally build more judicious queries. For example, in order to
study the variations of the term “destroy”, the query will be :

Pompeii & expansion(volcano) & expansion(ancient)
with: expansion(volcano)=(mountain

�
mount

�
crater

�
volcano)

Once the documents have been fetched, pertinent and non-
pertinent documents are separated according to the answer
pattern. Note that thanks to this method, the pertinent and
non-pertinent documents are fetched with the same query,
which is once more aimed at limiting bias possibilities.The
last step is the manual validation of the corpus.

5.2 Study of the Variations
We searched the kinds of variations between the terms of the
question and words in the retrieved passages. A term variant
exists if a path of WordNet relations links the synset contain-
ing the word of the question to a synset containing the word
of the passage. The links taken into account are any combi-
nation of WorNet relations, except for glosses and morpho-
logical derivations. The passages are about 180 words long.

As to measure the frequency of kinds of variants, we ag-
gregated them into a small number of classes. We chose to
classify them according to the WordNet path length. Classes
are synonyms (lemmas are different but words belong to a
same synset) and words when they are distant from n rela-
tions (with n from 1 to 4).

We counted how many links each passage, either pertinent
or not, contains. We only considered the less distant variation
of each term of the question, if exists. Figure2 shows the av-
erage frequency of classes of links in both pertinent and non-
pertinent passages, and the ratio between those two numbers.

Figure 2: Precision of extended variations

We notice that the frequency of synonyms (point 0 on the
x-axis in Figure2) is similar to the results we obtained in our
preceding study. It appears that links compound of two rela-
tions are more frequent than 1-relation links. Moreover, they
achieve a better precision. These 2-relation links often consist
in hypernymy relations followed by hyponymy relations. For
instance, town, a correct variant for city is given by the fol-
lowing path: city (hypernym) municipality (hyponym) town.

A question containing the word wife can be answered
thanks to the word husband, because they are related through:
wife (hypernym) spouse (hyponym) husband.

These observations show that term expansion can benefit of
the use of compound relations and that variations should not
be limited to synonymy or to one link hyponymy relations.

6 Conclusion
In TREC as in EQueR campaigns, systems that obtain the
best results make use of semantic knowledge sources. Intu-
itively, one can assume that such information is necessary in
open domain question answering. Nevertheless, few of these
robust systems have evaluated how their results are enhanced
by using this kind of information, because doing this eval-
uation is sometimes complex or even impossible because of
the system architecture. In this paper we propose a solution
which consists in exploring result corpora aiming to find what
kind of knowledge was really used.

This evaluation allowed us to check that uncontrolled use
of synonyms gives very few improvements in the system re-
sults; on the contrary, multiterms provide a context that makes
possible the discrimination of synonyms and the selection of
relevant variations.

Most importantly, this study allows us to evaluate to about
85% the rate of correct answers that may be found without
quite any semantic knowledge. This rate is rather high, but
not sufficient, and obtaining best results necessarily means a
better use of semantic knowledge.

References
[Fellbaum, 1998] C. Fellbaum. WordNet: An Electronic Lex-

ical Database. MIT Press, Cambridge, MA, 1998.

[Ittycheriah et al., 2001] A. Ittycheriah, M. Franz, and
S. Roukos. Ibm’s statistical question answering system
- trec-10. In Proceedings of the Tenth Text retrieval con-
ference, Gaithersburg, MD, 2001. NIST.

[Jacquemin, 1999] C. Jacquemin. Syntagmatic and paradig-
matic representations of term variation. In Proceedings,
ACL’99, pages 341–348, University of Maryland, 1999.

[Moldovan et al., 2003] D. Moldovan, M. Paşca,
S. Harabagiu, and M. Surdeanu. Performance issues
and error analysis in an open-domain question answering
system. ACM Transactions on Information Systems,
21(2):133–154, 2003.

[Yang and Chua, 2002] H. Yang and T.-S. Chua. The inte-
gration of lexical knowledge and external resources for
question answering. Proceedings od The Eleventh Text Re-
trieval Conference, 2002.

KRAQ'05 - IJCAI workshop - July 30th 2005 52

A Question Typology and Feature Set for QA

Lili Aunimo
University of Helsinki

Department of Computer Science
FIN-00014 University of Helsinki, Finland

lili.aunimo@helsinki.fi

Abstract

This paper presents a typology and a feature set to
be used in question classification for question an-
swering. The typology and feature set are evaluated
using a set of general domain questions.

1 Introduction
A general domain question answering (QA) system typically
takes as its input a variety of semantically different natural
language questions and their reformulations. In order to ex-
tract the answer to these questions from text, the answer type
and the extraction pattern related to that type is needed. A
question typology is used to map between the questions and
the answer types. Each answer type then has a set of ex-
traction patterns related to it. This paper proposes a question
typology for general domain factual QA, and a set of relevant
features that can be extracted from the questions and used to
classify them according to the typology.

Almost all general domain QA systems rely on some kind
of question typology. An exhaustive typology containing 140
different question types has been created by Hovy et al.[Hovy
et al., 2002]. This typology is provided with surface text pat-
terns that allow the system to find answers of the desired type
from text. However, the accuracy of a classifier classifying
questions according to the typology presented is not reported.

Li et al. have experimented with the use of different feature
combinations in question classification [Li et al., 2004]. They
report an accuracy of 92.5 % when classifying questions into
6 coarse classes and an accuracy of 89.3 % when classify-
ing questions into 50 fine classes. Their classifiers are based
on the Winnow algorithm and the number of active features
used is counted in hundreds. Question classification results
reported by Suzuki et al. [Suzuki et al., 2003] are in line with
the experiments of Li et.al, and they also found out that using
both named entities and semantic information is necessary to
perform high-performance question classification.

2 The Proposed Typology
The proposed typology is developed bearing in mind the fol-
lowing three main requirements that we determined for a
good question typology that is to be used in a QA system:

1. The types of the typology are the answer types (also
called targets) for the questions. These types should
be automatically identifiable from natural language text.
For example: The type of the question Who is the inven-
tor of television? is PERSON. The answer to he question
is a person name, and person names can be automatically
identified from natural language text with a reasonable
accuracy.

2. The typology should be such that the questions can be
automatically classified according to it. This means that
there has to be a feature set based on which the classifi-
cation is possible. Further, the features must be such that
they can be inferred programmatically from the ques-
tions.

3. The typology should be generalizable, which means that
it should apply to different domains and languages.

The typology is developed for general domain question
answering systems such as those evaluated in the TREC1

and CLEF2 QA evaluation campaigns. As a starting point,
we used the Multieight-04 Corpus [Magnini et al., 2005].
Multieight-04 corpus classifies questions into eight classes.
Based on the two-layered question taxonomy of Li and Roth
[Li and Roth, 2002] that is created for the questions of TREC
10, we modified the original question typology. As can be
seen from the Table 1, the Multieight-04 Corpus contains 8
classes and our typology 18 classes. The figure also lists the
class names and their frequencies in the first 314 questions
of the 700 questions of the Multieight-04 Corpus. As can
be seen from the Table 1, the class other has been split into
11 finer classes. The 7 other classes from the multieight-04
corpus have been taken as such. In addition, the original clas-
sification of individual questions into classes has been revised
and thus the frequencies of classes are different even though
the dataset is the same. For example, the questions What is
Judge Borsellino’s first name? and What office does Ariel
Sharon hold? are classified as OTHER in the multieight-04
corpus and as PERSON in the new classification.

1http://trec.nist.gov/
2http://clef-qa.itc.it/

KRAQ'05 - IJCAI workshop - July 30th 2005 53

Fine Typology MultiEight-04
Class # Class #
PERSON 69 PERSON 61
LOCATION 50 LOCATION 48
MEASURE 45 MEASURE 44
ORGANIZATION 44 ORGANIZATION 37
TIME 38 TIME 39
MANNER 20 MANNER 21
SUBSTANCE 8 OTHER 49
OBJECT 7 OBJECT 15
ABSTRACT 7
ORGANIC 6
UNIT 4
ACTION 4
EVENT 4
NATIONALITY 3
MEDICAL 2
COLOR 1
LANGUAGE 1
AWARD 1

Table 1: The distribution of the first 314 questions from the
Multieight-04 Corpus over the fine typology proposed and the
coarse typology originally in the corpus.

3 The Features

The second requirement for a good typology that is listed in
Section 2 is that in order to be able to automatically classify
the questions according to a typology, there has to be a suit-
able feature set. Further, this feature set must be such that
the features for a given question can be inferred programmat-
ically.

3.1 Transformation of Questions into Features

The construction of a typology and of a feature set that can be
used to automatically classify questions according to the ty-
pology would be a relatively easy task if the questions could
be manually transformed into lists of features. However, in
a QA system, the incoming natural language questions must
be automatically transformed into lists of features. Thus, the
features have to be such that they can be programmatically
inferred from the question. According to our initial stud-
ies, the set of seven features that we propose is such. The
features consist of lemmatized words, part-of-speech (POS)
tags, punctuation marks, semantic tags and target tags. The
semantic tags used are the following: country, capital, lan-
guage, color, profession, person, award, organization, unit,
nationality, event, measure, time, named entity, location. The
target tagset consists of the following tags: location, nation-
ality, person, measure, organization, time, medical, manner,
award, event, color, language. Before transforming the ques-
tion into features, it is lemmatized and marked with POS tags,
semantic tags and target tags. The order of application of the
above phases is important as the subsequent phases use infor-
mation from previous ones.

In detail, the transformation of a question into a list of fea-
tures involves the following steps:

1. Lemmatize and tag the question with POS tags using a
parser from Connexor3.

2. Tag the question with semantic tags based on word lists,
WordNet[Fellbaum, 1998] and regular expressions con-
taining words, POS information and semantic tags.

3. Tag the question with target tags using regular expres-
sions consisting of question words, semantic tags and
POS information.

4. Tokenize the question. A token can be a multiword en-
tity tagged by a semantic or target tag or a single word.

5. Form the features. The features First, Second, Third,
Fourth, Fifth and Last token describe the corresponding
tokens of the question. Feature extraction from ques-
tions is done in three different ways:

Features First token, Second token and Last token:
If the token is a semantic or target tag, the feature
value is this tag. Otherwise, the token is a single
word, and its lemmatized form is the feature value.

Features Third token, Fourth token and Fifth token:
If the token is a semantic or target tag, the feature
value is this tag. If the token is an open class
part-of-speech word, i.e. an adjective, an adverb,
a substantive or a verb, the POS tag is the feature
value. Otherwise it is the word. If the token is
empty, the feature value is NIL.

Feature Target Tag: If the question contains a target
tag, it is the value of this feature. Otherwise the
value is NIL.

3.2 Experiments with the Proposed Feature Set
We applied the above described transformation of natural lan-
guage questions into lists of features to a dataset consisting of
the 314 first questions of the Multieight-04 Corpus. For each
of the seven features, the ten most frequent values as well as
the number of different values in the dataset are given in ta-
ble 2. The features First token, Second token and Last token
are open class which means that they don’t have a predefined
value set. The rest of the features are closed class and thus
they have a predefined value set.

The first six features describe the tokens found at different
positions of the sentence: the first, second, third, fourth, fifth
and last tokens. The last feature can refer to any token of the
sentence and it is NIL in 63 % of the questions. Tokens can be
single words, word sequences or punctuation. For example,
the question

What <TT:time>year</TT:time> was
<ST:person>Thomas_Mann</ST:person>
awarded <ST:award>the_Nobel_Prize</ST:award>?}

has the 6 tokens what, year, Thomas Mann, awarded, the
Nobel Prize. (TT:time is a target tag and ST:person and
ST:award are semantic tags.) The values for the features de-
scribing the third, fourth and fifth tokens may also be NIL.
This is the case if the question is segmented only into 3, 4 or
5 tokens, i.e. it has less than 3, 4 or 5 words or tokens. For ex-
ample, the question Who is Shimon Peres? is represented as

3http://www.connexor.com

KRAQ'05 - IJCAI workshop - July 30th 2005 54

Name Open Values and frequencies #
First yes what(120), who(59), how(57), 14
token where(23), when(16), name(13),

in(12), on(5), tell(2), give(2)
Second yes be(117), do(32), many(30), 53
token what(14), tim(12), a(11), org(11),

mea(9), loc(8), can(6)
Third no NIL(43), the(68), V(57), 37
token N(30), person(16), ne(13), A(11),

loc(10), tim(9), a(5)
Fourth no NIL(97), V(60), N(33), the(15) 35
token profession(13), person(13), A(11),

ne(7), NUM(6), of(6)
Fifth no NIL(138), of(26), N(23), v(23) 35
token the(12), EN(12), A(8),

ADV(8), person(7), ne(6)
Last yes ne(28), organization(24), person(22), 122
token county(21), time(17), profession(11),

location(11), locate(10), world(7), org(6)
Target no nil(198), org(26), loc(26), 19

tag tim(23), mea(11), per(11) nat(3),
med(3), uni(1), man(1)

Table 2: The proposed set of seven features. For each feature,
the table lists its name, openness, ten most common values
and the total number of possible values.

who, be, NIL, NIL, NIL, person, NIL. The question has only
three tokens and no target tag.

4 Evaluation
In order to evaluate the typology and the feature set con-
structed, we performed six experiments using three different
typologies and two different feature sets. The classification
was performed using the C4.5 4 decision tree [Quinlan, 1993]
induction and classification algorithm. The accuracy figures
reported in Table 3 are obtained by 10-fold cross-validation
[Duda et al., 2001].

The typology containing 8 classes is the original typology
of the Multieight-04 Corpus. The typology of 7 classes is
the Multieight-04 Corpus typology where the classes OTHER
and OBJECT have been merged. The finer typology is the one
described in Section 2. The baseline feature set consists of six
features: the first, second, third, fourth, fifth and last words of
the question. The features first, second and last word are the
lemmatized forms of the corresponding words. The features
third, fourth and fifth word are either the POS tags or the
lemmatized forms of the corresponding words. If the word
belongs to an open word class (i.e. verb, noun, adjective or
adverb) or if it is a numeral, the feature is its POS tag. Other-
wise it is the lemmatized form of the word. The semantically
enhanced feature set consisting of seven features is the one
described in Section 3.2. The results are shown in table 3.

The semantic features clearly enhance the classification
performance. The fact that the classification using also the
semantic features into 18 classes is less accurate than classi-
fication into 8 or 7 classes might be due to the small num-

4The software is available at
http://www.rulequest.com/Personal/c4.5r8.tar.gz

Features 18 Classes 8 Classes 7 Classes
Baseline 71,3 % 71,3 % 78%
6 features
Semantic 80,3 % 83,1 % 85,3 %
7 features

Table 3: Classification accuracy using three different typolo-
gies and feature sets.

ber of training examples: 284 or 283 training examples ver-
sus 30 or 31 testing examples. For some classes, the whole
dataset of 314 contains only one example. Detailed classi-
fication figures are shown in Tables 4 and 5. In general, the
common classes are classified very accurately, on the expense
of the rare classes. Experiments using a similar feature set
and typology as the baseline feature set and the typology of
8 classes described above, have been performed on Finnish
questions[Aunimo and Kuuskoski, 2005]. The accuracy of
the classifier has been about 71% which is very close to the
71,3% accurasy reported here.

Real class # Classified as
a b c d e f g h i

a PERSON 64 3 2
b LOCATION 1 43 5
c MEASURE 42 2
d ORGANIZATION 4 40
e TIME 2 36
f MANNER 1 1 1 17
g SUBSTANCE 1 3 4
h OBJECT 1 4 1
i ABSTRACT 1 2 2 1
j ORGANIC 2 2 1
k UNIT 2 1 1
l ACTION 1 2
m EVENT 1 1 1 1
n NATIONALITY
o MEDICAL 2
p COLOR 1
q LANGUAGE 1
r AWARD 1

Real class # Classified as
j k l m n o p q r

a PERSON 1
b LOCATION
c MEASURE 1
d ORGANIZATION
e TIME
f MANNER
g SUBSTANCE
h OBJECT 1
i ABSTRACT 1
j ORGANIC 1
k UNIT
l ACTION 1
m EVENT
n NATIONALITY 2 1
o MEDICAL
p COLOR
q LANGUAGE
r AWARD

Table 4: Classification results using the semantically en-
hanced features in detail.

5 Future Work and Conclusions
The work reported here shows that the use of semantic fea-
tures enhances the performance of a question classifier for
QA. In addition, the question typology has an important ef-
fect on classifier performance: few classes that are evenly dis-
tributed among the questions gives better results than a fine-

KRAQ'05 - IJCAI workshop - July 30th 2005 55

Class Accuracy %
PERSON 94,1,
LOCATION 87,8
MEASURE 93,3
ORGANIZATION 90.9
TIME 94,7
MANNER 89,5
SUBSTANCE 50,0
OBJECT 14,3
ABSTRACT 14,3
ORGANIC 16,7
UNIT 0
ACTION 0
EVENT 0
NATIONALITY 33,3
MEDICAL 0
COLOR 0
LANGUAGE 0
AWARD 0

Table 5: Classification accuracy by class using the semanti-
cally enhanced feature set.

grained typology with a skewed distribution. However, natu-
ral language questions that are posed to a QA system tend to
need a finegrained classification where classes are unevenly
populated. The typology and the feature set presented in this
paper were developed to address just these problems. How-
ever, a large body of work remains to be done. First of all, the
experiments described above should be done using a bigger
dataset because only such a dataset will give more reliable
results on the finegrained classification task. Experimenting
with a larger dataset will also show how well our semantic
tagging and semantic target tagging methods are applicable
to unseen data.

In addition to experimenting with a larger dataset, the ty-
pology and feature set should be ported to other languages
in order to see how generalizable they are. The final evalua-
tion forum for the typology and feature set presented here is
a full QA system. A QA system will show how the typology
matches the answers to be extracted form unstructured text.

References
[Aunimo and Kuuskoski, 2005] Lili Aunimo and Reeta Ku-

uskoski. Reformulations of finnish questions for question
answering. In Proceedings of the 15th Nordic Confer-
ence of Computational Linguistics, Joensuu, Finland, May
2005. To appear.

[Duda et al., 2001] Richard O. Duda, Peter E. Hart, and
David G. Stork. Pattern Classification. Wiley-
Interscience, 2001.

[Fellbaum, 1998] Christiane Fellbaum, editor. WordNet : an
electronic lexical database. MIT Press, 1998.

[Hovy et al., 2002] Eduard Hovy, Ulf Hemjacob, and Deep
ak Ravichandran. Question/answer typology with surface
text patterns. In Proceedings of the Human Language
Technology Conference, San Diego, USA, 2002.

[Li and Roth, 2002] Xin Li and Dan Roth. Learning ques-
tion classifiers. In Proceedings of the 19th International
Conference on Computational Linguistics, Taipei, Taiwan,
2002.

[Li et al., 2004] Xin Li, Dan Roth, and Kevin Small. The
role of semantic information in learning question classi-
fiers. In Proceedings of the 1st International Joint Con-
ference on Natural Language Processing, Hainan Island,
China, 2004.

[Magnini et al., 2005] B. Magnini, A. Vallin, C. Ayache,
G. Erbach, A. Peñas, M. de Rijke, P. Rocha, K. Simov,
and R. Sutcliffe. Overview of the CLEF 2004 Multilingual
Question Answering Track. In C. Peters, P. D. Clough,
G. J. F. Jones, J. Gonzalo, M. Kluck, and B. Magnini,
editors, Multilingual Information Access for Text, Speech
and Images: Results of the Fifth CLEF Evaluation Cam-
paign, volume 3491 of Lecture Notes in Computer Sci-
ence. Springer Verlag, 2005.

[Quinlan, 1993] J. Ross Quinlan. C4.5: Programs for Ma-
chine Learning. Morgan Kaufmann, San Francisco, CA,
1993.

[Suzuki et al., 2003] Jun Suzuki, Hirotoshi Taira, Yutaka
Sasaki, and Eisaku Maeda. Question classification using
HDAG kernel. In Proceedings of the Workshop on Mul-
tilingual Summarization and Question Answering, held in
conjunction with the 4 1th Annual Meeting of the Associa-
tion for Computational Linguistics., 2003.

KRAQ'05 - IJCAI workshop - July 30th 2005 56

Recognition of alternation paraphrases: a robust and exhaustive symbolic
approach

Marilisa Amoia
Dept of Computational Linguistics

University of the Saarland
Saarbrücken Germany
amoia@coli.uni-sb.de

Claire Gardent
CNRS/Loria

Campus Scientifique BP 239
54506 Vandoeuvre-les-Nancy, France

claire.gardent@loria.fr

Abstract

In this paper we show how by incorporating lin-
guistic knowledge such as that encoded in Verbnet
and WordNet in a shallow parser like XIP, it is pos-
sible to build a robust semantic parser which can
cope with paraphrastic constructions involving al-
ternations and/or lexical synonymy. In the future,
we want to extend the parser taking into considera-
tion more complex cases of paraphrastic construc-
tions.

Topics: use of language resources for reasoning in question-
answering.

1 Introduction
A salient feature of natural language is that it allows para-
phrases that is, it allows different verbalisations of the same
content. Thus although the various verbalisations in (1) may
have different pragmatic or communicative values, they all
share a core semantic content, the one approximated by a tra-
ditional montagovian compositional semantics.

(1) a. This key opens the safe.
The safe opens with this key.

b. The laboratory merges with the firm.
The laboratory and the firm merge.

c. Jean hit the wall with a stick.
Jean hit the stick on the wall.

d. I give books to John.
I give John books.

Linguists have long noticed the pervasiveness of para-
phrases in natural language and attempted to caracterise
it. Thus for instance Chomsky’s “transformations” capture
the relation between one core meaning (a deep structure
in Chomsky’s terms) and several surface realisations while
[Mel’čuk, 1988] presents sixty paraphrastic rules designed to
account for paraphrastic relations between sentences.

More recently, work in information extraction (IE) and
question answering (QA) has triggered a renewed research
interest in paraphrases as IE and QA systems typically need
to be able to recognise various verbalisations of the content.
Because of the large, open domain corpora these systems deal

with, coverage and robustness are key issues and much on
the work on paraphrases in that domain is based on auto-
matic learning techniques (see for example [Barzilay and Lee,
2003] and [Shinyanma et al., 2002]) .

In this paper, we investigate an alternative research direc-
tion and present a symbolic treatment of paraphrases which
(for the moment) is restricted to alternations and/or lexical
synonymy. For this type of paraphrases, we present a robust
and wide coverage system which, by integrating the detailed
knowledge of alternations and of lexical synonymy encoded
in VerbNet and WordNet in a cascaded finite state parser (Xe-
rox Incremental Parser henceforth, XIP), assigns two such
paraphrases one and the same semantic representation.

The paper is structured as follows. Section 2 presents the
linguistic resources used and the type of semantic representa-
tions produced by our approach. Section 3 shows how we ex-
tend XIP to integrate VerbNet and WordNet information so as
to assign paraphrases the same semantic representation. Sec-
tion 4 presents an evaluation of the system based on a set of
annotated examples extracted from VerbNet. Section 5 con-
cludes with pointers for future work.

2 Lexical resources: VerbNet and WordNet
VerbNet is a broad-coverage domain-independent verb-
lexicon [Kipper et al., 2000] which encodes syntactic and se-
mantic information for about 4000 english verbs. The verbs
are organised in classes which refine Levin’s classes [Levin,
1993] and capture generalisations about the regular associa-
tion between syntactic and semantic verb properties.
More specifically, a VerbNet class has the following compo-
nents: (i) the set of english verbs belonging to that class each
verb being annotated with the WordNet meaning(s) relevant
to that class, (ii) the set of theta roles which can be mapped
to the arguments of these verbs, (iii) selectional restrictions
on the arguments and (iv) a set of frames consisting of an
indentifier, an example, a syntactic description and a decom-
positional semantics common to all verbs in that class. Figure
1 pictures the VerbNet frame for the class meander-47.7.

For the treatment of paraphrases, the information contained
in VerbNet is useful for several reasons. First, VerbNet doc-
uments the alternations of each verb such as those given in 1
and those illustrated by Figure 1 e.g., :

(2) a. The river meanders through the valley

KRAQ'05 - IJCAI workshop - July 30th 2005 57

Members:
cascade(1), climb(4), crawl(), cut(), drop(), go(7),
meander(1), plunge(), run(3), straggle(2), stretch(1),
sweep(5), tumble(), turn(), twist(), wander(4), weave(4),
wind(1 2)

Thematic Roles and Selectional restrictions:
Location[+concrete] Theme[+elongated]

Frames:
Intransitive (+ path PP)
”The river runs through the valley”
Theme V Prep[+path] Location
Prep(during(E),Theme,Location) exist(during(E),Theme)
Locative Inversion
”Through the valley meanders the river”
Prep[+path] Location V Theme
Prep(during(E),Theme,Location) exist(during(E),Theme)
There-insertion
”There meanders through the valley a river”
there V Prep[+path] Location Theme
Prep(during(E),Theme,Location) exist(during(E),Theme)
There-insertion
”There meanders a river through the valley”
there V Theme Prep[+path] Location
Prep(during(E),Theme,Location) exist(during(E),Theme)

Figure 1: VerbNet representation of the meander-47.7 class

b. Through the valley meanders the river

c. There meanders through the valley a river

d. There meanders a river through the valley

By constructing the group of arity preserving alternations
a verb participates in, it is then possible to identify all mean-
ing preserving alternations a verb can occur in. Further since
VerbNet associates with each verb class a thematic grid and
a decompositional semantics, it becomes possible to develop
a parser which, based on this knowledge can build identical
semantic representations for alternations paraphrases. Thus
for instance, using the thematic role information associated
in VerbNet with the meander-47.7 class, all sentences in 2
can be assigned the same basic semantic representation:

River(R) & Valley(V) & Meander(E) & Location(E,V) &
Theme(E,R)

Another feature of VerbNet which makes it attractive for the
treatment of paraphrases is its linking with WordNet. As in-
dicated above, the verbs of a VerbNet class are annotated with
the WordNet meaning(s) relevant to that class. Now because
WordNet records the synonyms of a given word usage, this
linking between VerbNet and WordNet also gives us access
to synonymic paraphrases. In the case at hand for instance,
the set of synonyms retrieved from WordNet for meaning 1 of
meander is weave, wind, thread, meander, wander. By inte-
grating this information in a parser lexicon and combining it
with the knowledge of alternations given by VerbNet, we can
thus obtain a parser wich assign one and the same semantic
representation to the following sentences.

(3) a. The river meanders through the valley

b. The river weaves through the valley

c. Through the valley weaves the river

d. There weaves through the valley a river

e. There weaves a river through the valley

3 Extending XIP to recognise VerbNet
alternation paraphrases

In what follows, we show how the knowledge encoded in
VerbNet can automatically be integrated in a robust parser
thereby supporting the recognition of the set of alternation
and/or lexically synonymic paraphrases covered by VerbNet.

3.1 XIP
XIP ([Ait-Mokhtar et al., 2002]) is a rule-based, shallow
parser based on finite state techniques that garantees robust-
ness by adopting incrementality: the input sequence is pro-
cessed by a layered grammar, each grammar layer being ap-
plied sequentially. As the input is processed, it is either en-
riched or left unchanged – the output is the input sequence as
annotated by the sequential application of the rules from the
different layers. By ordering the grammar rules appropriately,
data which is either infrequent or incorrect can therefore be
handled.

We use XIP version 3.10 (2000-2001) as developed at the
Xerox Research Europe. This version includes the NTM tok-
enizer and morphological analyser based on finite states tech-
nology, the HMM statistical POS tagger and a grammar for
English. The parser is also reasonably efficient running at a
speed of 1 300 words per second on a Pentium II 50.

Brutus killed Caesar

Brutus Noun killed Verb Caesar Noun

NTM, HHM

{ TOP { SC {NP{Brutus} FV{killed}} NP{ Caesar }.}

Chunking rules

MAIN(killed),SUBJ(killed,Brutus), OBJ(killed,Caesar)

Dependency rules

Figure 2: XIP representation of the sentence
Brutus killed Caesar.

The grammar for English includes two types of subgram-
mars namely, chunking and dependency grammars. The
chunking grammar describes constituency structure and
consists of layered groups of chunking rules which apply
either to partially ordered bags of nodes or to ordered sub-
sequences. The following rule, for example, builds an NP
chunk if the list of nodes contained in the current XIP stack
contains a determiner which is followed (also not immedi-
ately ?*) by a noun

15 > NP=Det, ?*, Noun.

The dependency grammar supports the specification of
(functional, thematic, semantic, anaphoric, etc.) relations
between words or chunks and is based on the (layered) spec-
ification of groups of dependency rules of the form:

| 〈subtree pattern〉 |
if 〈 conditions 〉

〈dependency term 〉

where subtree_pattern is a tree matching expression
describing structural porperties of part of the input tree,

KRAQ'05 - IJCAI workshop - July 30th 2005 58

conditions is any Boolean expression built up from
dependency terms and dependency_term is a term of
the form name<flist>(a1, ..., aN) with name the
name of a dependency relation, flist a list of features as-
sociated with that dependency relation and a1, ..., aN
the relation arguments.

The following dependency rule for example,
| SC(?*, FV[trans:+]{?*,#1[last:+]}}, NP[time:]{?*, #2[last:+]}|
V COMP [dir : +](#1, #2)

recognises a VCOMP dependency between a transitive verb
(#1), head of a finite verb chunk FV within a clause chunk
(SC), and the head (#2) of an NP chunk with negative time
feature.

3.2 Incorporating Verbnet into XIP
To support a robust and large scale treatement of alternation
paraphrases, we integrated VerbNet information into a XIP
lexicon and we specified dependency rules which use this in-
formation together with the VerbNet set of lexico-syntactic
patterns in order to assign a given input sequence the thematic
grid assigned to that sequence by VerbNet.

3.3 The verb lexicon
The XIP verb lexicon associates each verb with its VerbNet
class and with the WordNet Synset identifier corresponding
to the relevant usage of the verb in that VerbNet class. For
instance, the verb meander is assigned the following lexical
entry: meander: verb+=[meander-47.7, pred=c01828635].
The VerbNet class will be used both to guide syntactic pars-
ing and to support semantic construction. Further, the Verb-
Net semantic class is used in the rule to specify the syn-
tax/semantic interface of the verb.

The WordNet synset information on the other hand serves
to group together synonyms. That is, all verbs in a VerbNet
class which belongs to the same WordNet synset will be as-
signed the same semantic representation.

The VerbNet class and synset assignment was made auto-
matically on the basis of both VerbNet and WordNet informa-
tion. At present, the lexicon contains 4225 verbs correspond-
ing to 2779 WordNet synsets and 352 VerbNet verb classes.
However since word sense disambiguation is not integrated in
XIP, we only consider the most frequent meaning of a verb.
In future, we intend to bypass this limitation by tagging the
input verbs with meaning identifiers.

3.4 Semantic construction
To assign identical semantic representation to alternation
paraphrases, we augment the XIP grammar with a set of the-
matic grid dependency rules. These rules assume as input the
output of the existing XIP parser that is, a representation of
the input including both constituency and grammatical func-
tions (subject, object, etc.) information. Based on this infor-
mation, a thematic grid (dependency) rule identifies a given
VerbNet pattern and specifies a mapping between syntactic
and thematic argument.

Suppose the sentence to be parsed is:

(4) The river meanders through the valley

As indicated in section 2, VerbNet associates to that usage of
the verb meander the grid of theta roles Theme V Prep[+path]
Location, where the canonical subject of the verb is assigned
a Theme role and a prepositional object introduced by a path
denoting preposition a Location role.

In the XIP framework, such a specification is captured by
the following (simplified) dependency rule:
if((MAIN(#1[coil9_6])

|| MAIN(#1[coil9_61])
...
|| MAIN(#1[meander47_7])
...
|| MAIN(#1[waltz51_5])
)
& VDOMAIN[passive:˜](#1,#11)
& SUBJ-SEM(#1,#2) & ˜OBJ(#1,?)
& VMOD[post](#1,#4) & PREPD(#3,#4)
& (#3[vnpath])

)
EVENT(#1),Theme(#1,#2),Location(#1,#4).

In words: if the main verb #1 (which should not be in
passive mode) is associated via lexical lookup with one of
the listed VerbNet classes (and in particular with the mean-
der47 7 class) and it has no object but has a subject #2 and
a postposed verb modifier #4 introduced by a path denoting
preposition #3, then the semantic representation produced is
EVENT(#1), Theme(#1,#2),Location(#1,#4).

As this rules applies to the input sequence (4), the follow-
ing representation is output where indeed the correct thematic
representation has been produced:

EVENT(running C01870464 MEANDER47 7:+)

LOCATION(running C01870464 MEANDER47 7:+,valley)

THEME(running C01870464 MEANDER47 7:+,river).

The extended XIP grammar has 425 semantic rule ordered by
specificity, the most specific rules occurring first and the least
specific last. Since within one grammar layer only the first
applicable rule is used, this ensures that the syntactic con-
figuration captured by the rule that is executed is indeed the
most appropriate.

This rule ordering also allows an appropriate treatment of
the difference between adjuncts and subcategorised PPs. Be-
ing more specific, the rules describing verbs taking preposi-
tional arguments will be tested before the general rules de-
scribing the combination of verbs with adjuncts and so will
be preferred in case they can apply. Consider the two sen-
tences in 5.

(5) a. Sharon shivered from fear.
EVENT(C01834682),CAUSE(C01834682,fear),

EXPERIENCER(C01834682,Ann)

b. Sharon breakfasted in the garden.
EVENT(C01149559), AGENT(C01149559,Ann)

In the first sentence, the PP is described in VerbNet as an ele-
ment of the subcategorisation frame of the verb shiver which
is mapped to the CAUSE role. In contrast, in the second sen-
tence the PP is treated as an adjunct and is not assigned a
thematic role.

To define the specificity ordering over the thematic rules,
we first generalised the syntactic frames to 68 more general
templates by ignoring prepositional and selectional informa-
tion. The resulting set of templates was then organised in a

KRAQ'05 - IJCAI workshop - July 30th 2005 59

NP V

NP V NP

NP V NP PP

NP V NP PP PP

NP V NP NP

NP V NP NP PP

NP V Adv

NP V Adv PP

NP V Adj

NP V Adj PP

Figure 3: Hierarchy of syntactic patterns in Xip

hierarchy (cf. Figure 3) which was then used to automatically
order the XIP thematic rules.

To cover unknown input and more specifically verbs whose
VerbNet class is not given in the lexicon, we introduce an
additional postprocessing step which performs a default the-
matic grid assignment on the basis of the 68 abstract rule
templates used to specify rule ordering. For instance, sup-
pose that the input sentence is 6 and that the VerbNet class
for “stand” is not given in the lexicon. In such a case, the
general rule specifying a syntactic configuration of the form
PP[loc] V NP, will assign the locative PP an arg2 role
and the NP an arg1 role thereby producing the given seman-
tic representation.

(6) a. ”On the pedestal stood a statue
EVENT(stood), ARG1(stood,statue), ARG2(stood,pedestal)

More generally, the postprocessing step will assign default
underspecified thematic roles to maximal projection phrases
occurring in the input on the basis of surface syntax infor-
mation. Note that the use of underspecified thematic roles
renders the obtained semantic representations similar to those
assumed by PropBank [Kingsbury et al., 2002].

4 Evaluation
To evaluate the extended XIP parser, we extracted from Verb-
net the 1012 example sentences it contains together with their
thematic role annotation. We then applied the parser to the re-
sulting set of sentences and automatically compared the the-
matic grid output by the extended XIP parser with the the-
matic grid described by the VerbNet annotation. We obtained
the following results:

• 71% of the sentences were assigned the correct repre-
sentation (i.e. the same roles assignment as in VerbNet),

• 15% of the sentences were assigned the correct syntactic
pattern but the wrong theta roles because the parser has
no ontological restrictions on roles

• 4% of the sentences were assigned a default pattern be-
cause either the tagger was not able to recognize the
class appartenance of the verb, or the verb class assign-
ment in the lexicon did not allow the syntactic pattern
illustrated by the given sentence,

• 10% of the sentences could not be mapped onto a Verb-
Net pattern because the constituency information deliv-
ered by XIP was insufficient.

In sum, the evaluation shows that the robust parser devel-
oped deals appropriately with 71% of the VerbNet data and
that there is reasons to hope that it can be further improved
by incorporating selectional restrictions on roles and by im-
proving the basic constituency grammar.

5 Conclusion
In this paper, we have shown how to integrate the linguistic
knowledge of alternations encoded in VerbNet and the verbal
lexical synonymy information encoded in WordNet into a ro-
bust parser which assigns alternation paraphrases one and the
same semantic representation. A first evaluation shows that
the parser has an accuracy of 71%.

Current and future work concentrates on (i) improving the
current results by improving the grammar and integrating se-
lectional restrictions, (ii) extending the paraphrastic coverage
by considering additional paraphrasing mechanisms such as
morphoderivational variants, cross categorial synonyms and
antonyms and (iii) evaluating the system on real text corpora.

An additional line of research concerns the usability of the
existing parser for automatically tagging real text either with
VerbNet thematic grid information using the detailed the-
matic grid dependency rules or with less specific PropBank
thematic grid information by resorting to the less detailed rule
templates used in the postprocessing step.

Acknowledgments
We would like to thank the Xerox company for making XIP
available to us. We would also like to thank the Contrat Plan
Etat Région: Ingénierie des Langues, du Document et de
l’Information Scientifique, Technique et Culturelle for par-
tially funding the research presented in this paper.

References
[Ait-Mokhtar et al., 2002] S. Ait-Mokhtar, J P. Chanod, and

C. Roux. Robustness beyond shallowness: incremental
deep parsing. Natural Language Engineering, 8(2/3):121–
144, 2002.

[Barzilay and Lee, 2003] Regina Barzilay and L. Lee.
Learning to paraphrase: an unsupervised approach
using multiple-sequence alignment. In Proceedings of
NAACL-HLT, 2003.

[Kingsbury et al., 2002] Paul Kingsbury, Martha Palmer,
and Mitch Marcus. Adding semantic annotations to the
penn treebank. In Proceedings of the Human Language
Technology Conference, San Diego, California, 2002.

[Kipper et al., 2000] Karin Kipper, Hoa Trang Dang, and
Martha Palmer. Class-based construction of a verb lexi-
con. In Proceedings of the 7th National Conference on Ar-
tificial Intelligence (AAAI-2000), Austin, TX, July-August
2000. Morgan Kaufmann.

[Levin, 1993] Beth Levin. English Verb Classes and Alter-
nation, A preliminary Investigation. The University of
Chicago Press, Chicago, 1993.

[Mel’čuk, 1988] I. Mel’čuk. Paraphrase et lexique dans la
theorie linguistique sens-texte. Lexique, 6:13–54, 1988.

[Shinyanma et al., 2002] Y. Shinyanma, S. Sekine, K. Sudo,
and R. Grishman. Automatic paraphrase acquisition from
news articles. In Proceedings of HLT, 2002.

KRAQ'05 - IJCAI workshop - July 30th 2005 60

On the Effective Use of Cyc in a Question Answering System

Jon Curtis, Gavin Matthews, David Baxter
Cycorp, Inc. 3721 Executive Center Drive, Suite 100, Austin, TX 78731.

{jonc,gmatthew,baxter}@cyc.com

Topics: flexibility supported by discourse/user model, new types of questions, reasoning with incom-
plete knowledge, response generation.

Abstract
We describe a commercial question-answering sys-
tem that uses AI – specifically, the Cyc system – to
support passage retrieval and perform deductive
QA, to produce results superior to what each ques-
tion-answering technique could produce alone.

1 Introduction
This paper describes a working prototype of a commercial
question-answering system that uses artificial intelligence in
conjunction with NLP-driven passage retrieval in a way that
integrates the two markedly different approaches to ques-
tion-answering and produces better results than either ap-
proach could yield alone.1 MySentient2 Answers 1.0 draws
upon the Cyc system, a large knowledge-base, common-
sense reasoning system. We describe three areas in which
Cyc's knowledge contributes to the system's overall ques-
tion-answering ability, both directly in deductive question-
answering, and indirectly, by supporting passage-retrieval.
In particular, we focus on the use of Cyc for:

1. augmentation of NLP-based passage retrieval by gen-
erating NL expansions of key concepts mentioned in a
question;

2. answering question types that pose a challenge to pas-
sage retrieval methods, such as procedural ("How do I
…?") and cost/benefit ("Why should I …?"); and

3. paraphrasing the results of deductive question answer-
ing as NL strings for display to an end user.

We close with a discussion of the current limitations of the
integrated system and a description of anticipated extensions
to the use of Cyc in future versions.

2 Cyc
Cyc is a state-of-the-art artificial intelligence program that
has been in development since 1984. Drawing upon the
world’s largest general-purpose knowledge base of over
164,000 concepts and 3,300,000 facts (rules and ground

assertions) relating them3, Cyc is the only AI program in
existence today that can reasonably claim to have some de-
gree of common sense. Cyc’s knowledge is represented in
CycL, a higher-order logical language based on predicate
calculus. Every assertion in Cyc is represented in a context,
or microtheory, which allows the representation of compet-
ing theories. Like ordinary concepts, microtheories are ex-
plicitly represented as first-class objects in Cyc, giving Cyc
a reflective capability to reason about its own representa-
tions. Microtheories form a hierarchy that facilitates knowl-
edge re-use (assertions stored in the most general contexts
are always available), and inferential focus (given a query
posed in a specific microtheory, other knowledge from sib-
ling or more specific microtheories will not come into play).
Cyc’s inference engine combines general theorem proving
(e.g. rule chaining) with specialized reasoning (e.g. sub-
sumption and transitivity).

Cyc has been used in commercial web-search systems
(e.g. HotBot) and in question-answering systems, most re-
cently in a purely deductive system for answering AP chem-
istry questions, developed in collaboration with Vulcan, Inc.
[Friedland et al., 2004]. Cyc’s rôle in the MySentient sys-
tem heralds its first appearance in a commercial question-
answering system. MySentient makes use of Cyc perva-
sively, as a means to augment NLP-based QA, as the basis
for a deductive QA module, and in other capacities, such as
clarification and profiling, that will be touched upon here.

3 MySentient Answers 1.0
MySentient Answers 1.0 is a working question-answering
system, designed by MySentient Ireland (R&D) Ltd. of
Dublin, Ireland, and implemented in collaboration with Cy-
corp, Inc. of Austin, Texas, and the Center for Natural Lan-
guage Processing in Syracuse, New York4. MySentient
Answers has been the subject of extensive demonstration to
interested commercial parties and is expected to be available
for public access in the near future.

1 The work described in this paper was made possible by the

financial backing of MySentient.
3 MySentient uses a carefully-chosen subset of the full Cyc

knowledge base with 137,000 concepts and 1,700,000 facts.
2 “MySentient” is a registered trademark of MySentient Ireland

(I.P.) Limited.
4 See http://www.mysentient.com/, http://www.cyc.com/, and

http://www.cnlp.org/

 KRAQ'05 - IJCAI workshop - July 30th 2005 61

http://www.mysentient.com/
http://www.cyc.com/
http://www.cnlp.org/

3.1 Architecture
MySentient Answers is based on the S-Core architecture,
which integrates disparate components into a uniform XML-
based interface. Components each receive a storybook giv-
ing the history of the interaction, and their output is ap-
pended to the appropriate element. This design gives some
of the flexibility of a blackboard architecture, yet allows
some powerful simplifying assumptions.

3.2 Question Answering Modules
The S-Core architecture allows any task to be attempted in
parallel (or in sequence) by multiple competing modules. In
MySentient Answers, there are several question-answering
modules: various NLP passage-retrieval modules developed
by CNLP, and a deductive question-answering module
based on Cyc. All QA modules return NL answers.

CNLP’s question-answering capabilities are grounded in
a quasi-logical representation – Language-to-Logic, or
“L2L” that has proven successful in recent TREC question
answering tracks [Diekema, et al., 2000].

3.3 Methodology
The Cyc Knowledge Base is essentially open-domain, but
deployments of MySentient Answers will be focused on
specific domains that reflect the needs and interests of the

customer. The final goal of the project is that the cus-
tomer’s domain experts will perform much of this speciali-
zation, using a suite of MySentient Authoring Tools. At the
current stage of development, these tools are in a rudimen-
tary state; therefore, much of the authoring done in support
of the results described in this paper has been simulated by
blending prototype tools with the intervention of skilled
ontologists. This simulation not only provides a proof-of-
concept of the run-time question-answering system, but also
permits an informed comparison to be made between the
representation capabilities required and the feasible capa-
bilities of the planned authoring tools (see Section 8, “Cur-
rent Limitations and Future Directions,” below). The cor-
pus used for this simulation was provided by the Motley
Fool UK, based on its website.5

Figure 1: MySentient Answers system architecture,
showing selected components.

While coverage of a corpus must start with the corpus it-
self, it is also necessary to concentrate on test queries; Cyc’s
coverage of the Motley Fool domain therefore had two foci.

The corpus was subjected to automated analysis for noun
phrase identification and interpretation, plus extraction of
glossary entries. A manual pass of review and correction to
ensure broad coverage of the domain followed this.

Known and blind question sets were prepared (by both
Cycorp and MySentient) based on the corpus. The known
question sets were analyzed by question type (see Question
Types of Interest), and strategies for broad coverage of each
question type were devised and implemented.

Independently, the quality-assurance team performed
daily tests based on the question sets. Results were evalu-
ated on a primitive basis by automatic comparison with a
growing set of input/output pairs. Each input/output pair
was classified as correct, incorrect, or correct but badly
paraphrased. Incorrect results were reviewed with a focus
on identifying and resolving the broad class of defect (such
as missing or erroneous knowledge) rather than fixing prob-
lems specific to particular questions.

The intensive ontological engineering effort for the Mot-
ley Fool UK domain was performed over a four-week pe-
riod, and took 691.25 person-hours. The source corpus was
equivalent to about 200 pages of text and a total of 286 test
questions were prepared for that domain. The NLP-based
components also underwent a training process against the
Motley Fool corpus; however, this training was done inde-
pendently of the simulated authoring/ontological engineer-
ing effort done for Cyc. As a limited test of how MySen-
tient Answers benefits from integrating both NLP and de-
ductive approaches to question-answering, MySentient pre-
pared 132 questions that were posed to the system, and for
each question, each QA system was scored on whether it
produced a satisfactory answer. In borderline cases, a half-
point was awarded.

Overall, the multiple CNLP QA modules scored 63% and
the Cyc DQA module scored 34%. This asymmetry is to be
expected because of the relative maturity of NLP systems in
the QA domain. The federation of QA modules (taking the

5 “The Motley Fool” is a registered trademark of Motley Fool,

Inc. See http://www.fool.co.uk/ for the corpus website.

KRAQ'05 - IJCAI workshop - July 30th 2005 62

http://www.fool.co.uk/

high score for each question) scored 79%, a significant im-
provement over the individual QA modules. In several
cases, both modules gave usefully different answers that,
taken together, form a rounded answer to the user’s ques-
tion. Two interesting examples are:

In response to “How do I protect myself from credit card
fraud?” the CNLP module returned a passage that described
online fraud guarantee and internet delivery protection,
whereas the Cyc module returned sentences advocating PIN
secrecy, comparing receipts, and reporting credit card loss.

In response to “Should we get married or live together?”
the CNLP module returned a passage about the legal rights
accorded to married couples, whereas the Cyc module re-
turned sentences describing the economic benefits of co-
habitation and the tax benefits of marriage.

It is important to note that this test does not isolate all
federation factors. In particular, the Cyc-based DQA uses
on upstream CNLP modules for the identification of noun
and verb phrases, while the CNLP QA modules make use of
Cyc-derived expansions. Nevertheless, the limited test de-
scribed supports the view that the use of deductive question
answering in tandem with a NLP QA system can signifi-
cantly boost system effectiveness.

4 Discourse Modeling
Cyc’s contributions to MySentient Answers are grounded in
a discourse model, generated on the fly. This model stores
information from a user’s session, in CycL, so that Cyc can
reason over it. Each discourse model is associated with a
microtheory structure that is defined for each user and can
be extended across sessions to preserve useful information
about the user and his or her interactions with the system.

The most general microtheory in the structure is the user
profile, which contains data intended to persist between
sessions, and so is available for inference any time the user
logs in. Though not currently a mature feature of the sys-
tem, the user profile gathers information that can be used to
improve the quality of subsequent interactions. For exam-
ple, if the user asks for recommendations for Mazda truck
accessories during one session, and later asks for directions
to service stations for “my vehicle,” the system should be
able to use the knowledge, gained during the previous ses-
sion, that the user has a Japanese vehicle. These features are
still prototype technologies, and are therefore described in
the “Current Limitations and Future Directions” section of
this paper. The ability to profile the user is an exciting dis-
tinguishing feature of the MySentient system.

For NL parsing and generation, the user-session model
includes a lexical microtheory sub-structure that was origi-
nally developed for and used in the DARPA-funded, Cyc-
based KRAKEN knowledge-acquisition system [Panton, et
al., 2002]. The most general microtheory of this sub-
structure is a user-specific lexicon, from which the contents
of the appropriate general Cyc lexicon are visible. Though
British English is the assumed default language for the test
domain, the system is can determine the appropriate lan-
guage on a per-session basis. Once that language is deter-
mined, an assertion is added to the Cyc KB linking the user-

specific lexicon to the general lexicon for that language. So
for British English, Cyc will generate a sub-context link
from the user-specific lexicon to #$BritishEnglishMt, mak-
ing its data about British spellings, common words, etc.,
available. For more information on the representation and
use of lexicons in Cyc, see [Burns and Davis, 1999].

Directly below the user-specific lexicon are two more
lexical microtheories, which are used for inference by Cyc’s
parser and NL generation. By design, the parsing and gen-
eration microtheories are siblings; user-specific lexical in-
formation, such as information about how the user referred
to a concept, is stored in the user-specific lexicon, where it
is available for both parsing and generation.

Figure 2: Part of discourse model. Boxes show mi-
crotheories; ovals show events. Not shown are user-
independent super-contexts and other ontology.

Between the user profile and the user-specific lexicon are
one or more session microtheories, containing the vast ma-
jority of user-specific assertions. Sessions themselves are
explicitly represented as events, allowing their internal,
temporal structure to be modeled. Each session revolves
around the user asking one or more questions; these ques-
tion-asking events are also explicitly represented as proper
sub-events of the session to which they belong. Information
about the user’s question, such as the grammatical features
of the constituent phrases (e.g., “market indicators” is a bare
plural expression, “the stock market” is definite singular),

 KRAQ'05 - IJCAI workshop - July 30th 2005 63

the CycL semantics for the question (when available), and
hypotheses about what the question is about, are all related
to the user’s question-asking event, using special discourse
modeling vocabulary that can be leveraged by the Cyc in-
ference engine to support query expansion, deductive ques-
tion-answering, and natural language generation. Those
processes are described in the following sections.

5 Query Expansion
Query expansion is the process of altering an input question,
or a (quasi-)formal representation thereof, typically by add-
ing or replacing terms. The modifications a query under-
goes during the expansion process is determined by analysis
of the query terms. E.g. “AIM” might have the expansion
“Alternative Investment Market.” Expansions can be used to
focus a query, often by contributing to a set of query words,
or the categorization of its answer-type. The most common
approach to query expansion seen in the literature is to lev-
erage a dictionary-based program, such as WordNet, to pro-
duce syn-sets, hypernyms and hyponyms [Hovy, et al.,
2000], or to find appropriate, hard-to-predict part-of-speech
variations for noun compounds (“attorneys general,” and not
“attorney generals” as an expansion of “attorney general”)
[Bilotti, 2004], or to find stemming information for query-
words [Bacchin and Melucci, 2004].

A limiting feature of these approaches is a near-complete
reliance on lexical methods: Only the relationships between
terms are considered; the semantic relationships between
concepts are not.6 MySentient’s expansion-generation is a
departure in this regard. Key phrases in the user’s question

are identified, translated into CycL, and placed in the dis-
course model. The User Profile Manager then reasons over
this formal representation of the meanings of query-words
to identify concepts that form the semantic basis for expan-
sions. Other modules, such as the Deductive Question An-
swering Module and the Clarification Manager can also use
these phrase-level translations.

Several expansion strategies are explicitly represented in
the Cyc Knowledge Base, each defining criteria that a con-
cept must meet to be used as the semantic basis for expan-
sions. When a strategy is executed, inference seeks con-

cepts that meet the relevant criteria. The resultant bindings
are then sent to a Natural Language generation function that
generates NL for those bindings. The generated strings,
along with the strategy used and a confidence, are outputted
by the User Profile Manager as proposed expansions for the
original input term.

Figure 4: Part of Cyc’s credit card ontology with
faceting. The rightmost node is a second-order col-
lection; all other nodes are first-order collections.

Figure 3: MySentient's Clarification module uses
expansions to suggest re-phrasings of the user's
question.

Cyc is agnostic as to how the expansions should be used;
for example an NLP question-answering module might treat
them as conjuncts in a Boolean rewrite, or they might be
used in answer-type classification. Empirical evaluation of
various strategies — based on CNLP’s determination of
their usefulness for passage-retrieval by their technology,
and MySentient’s exacting wall-clock performance criteria
— led to the decision to include two strategies in MySen-
tient Answers 1.0: A synonym-generation strategy that calls

6 At least not directly. Some techniques (e.g. LSA) approxi-

mate semantic “closeness” by measuring co-occurrence in a cor-
pus. Semantic closeness, however, is not a first-order semantic
relationship; the authors contend that the semantic relationships
that explain semantic closeness are more valuable for expansion.

 KRAQ'05 - IJCAI workshop - July 30th 2005 64

upon the Cyc Lexicon to simulate traditional NLP-based
query expansion7, and a “classification” strategy8 that uses
definitional, or “type” information to generate expansions
useful for categorization. Given an input string, “APR,” the
User Profile Manager uses the synonym-generation strategy
to return the unabbreviated “annual percentage rate,” and
the classification strategy to return the more general “inter-
est rate.” Although the use of expansions by the NLP ques-
tion answering module is not visible to the end user, the
results of expansions are nevertheless discernable in My-
Sentient Answers 1.0: MySentient has implemented a sim-
ple Clarification module prototype that substitutes high-

confidence expansions into the original query, and presents
them to the user as proposed re-phrasings. For example, if a
user asks, “Who is offering the best APR for an auto loan?”
the Clarification manager will offer as re-phrasings, “Who is
offering the best interest rate for an auto loan?”, “Who is
offering the best annual percentage rate for an auto loan?”
and “Who is offering the best APR for car loan?”9

As noted above, other Cyc-based expansion strategies are
available, but are turned off by default. Nevertheless, these
are worth describing as examples of how the space of possi-
ble expansions is extended through a semantic approach.
Among these strategies is a “conceptually related” algorithm
that finds closely associated concepts, using significant se-

mantic relationships. For example, asked to expand
“asthma,” the conceptually related strategy will return
“lung” because asthma is known to be a specialization of
lung disease, and lung diseases are ailments that affect the
lungs. This same strategy will also return “medical insur-
ance,” because medical insurance provides coverage for
medical problems, and asthma is a kind of medical problem.

Another strategy is the “specializations” strategy, that,
when given a term that maps to a collection, will return sali-
ent specializations of that collection. For example, given
the input string “credit card,” this strategy will return the
names of the various brands of credit card, such as “VISA,”
“MasterCard,” “American Express,” and “Discover.” Cyc
draws on the knowledge that the collections representing
these cards are all instances of a higher order collection,
#$CreditCardTypeByBrand, that facets #$CreditCard by the
various brands. By restricting the search to collections that
are part of a faceting hierarchy, the strategy is able to avoid
returning less helpful specializations of #$CreditCard (e.g.,
“stolen credit card,” “credit card printed at a factory in Lon-
don,”) that the system might know about, but are more or
less arbitrary sub-collections, and not part of a more intui-
tive conceptual hierarchy.

Figure 5: For "GM", we get the CycL term
#$GeneralMotors. The "parts" of this term
include two sub-divisions and the CEO.

Finally, Cycorp has implemented two parts-based strate-
gies, parts_super and parts_sub, that use Cyc’s knowledge
of the structure of types and particular individuals to return
expansions that, in the parts_super case, reflect that con-
cepts placement in a structure, and in the parts_sub case,
reflect that concept’s internal structure. For example, given
the input string “GM” and using the parts_sub strategy, Cyc
returns “Buick” and “Saturn Corporation,” two sub-
divisions of General Motors, as well as “G. Richard Wag-
oner, Jr.”, the current CEO of GM.

6 Deductive Question Answering
Like the User Profile Manager, the Cyc-based Deductive
Question Answering module (DQA) uses explicitly repre-
sented strategies. The highest-confidence strategy queries
the knowledge base with a CycL representation of the user’s
question. As such, this strategy depends on the total success
of the Natural Language Preprocessor module (based on the
parsing technology described in [Panton, et al., 2002]), in
mapping English to CycL. In cases where syntactic or se-
mantic ambiguity in the user’s question results in competing
CycL interpretations, simple heuristics (such as preferring
the least complex CycL expression) are used to rank the
interpretations. The top-ranked interpretation is identified
in the discourse model as the default interpretation of the
user’s question, while the other candidates are recorded as
possible interpretations, available for later clarification.

7 The synonym strategy is an exception to the rule that strate-

gies first identify relevant CycL terms and then paraphrase each.;
instead, all synonyms are generated from a single CycL term that is
the best interpretation of the user’s phrase.

8 The classification strategy differs from other strategies in that
it uses a semantic closeness metric to assign confidences to its
outputs. Thus as an expansion of “auto loan,” “loan,” being closer
in Cyc’s generalization hierarchy, gets a higher confidence than
“obligation,” a more distant (and abstract) generalization.

The DQA module retrieves that CycL interpretation and
uses it to query the Cyc Knowledge Base. (If there are no
sentential interpretations, DQA moves on to the next strat-
egy.) In Cyc, a query consists a CycL formula and several
query-properties, including: a microtheory, or context, from
which to ask the query; the temporal index and granularity
(do we want bindings that satisfy the formula now, ever, all

9 The agreement error reflects the simplicity of the Clarifica-
tion module’s current substitution algorithm. That the input phrase
“an auto” has an indefinite article is recorded in Cyc’s discourse
model; the module can be “smartened” to use this information.

 KRAQ'05 - IJCAI workshop - July 30th 2005 65

the time, etc.?); a limit on the number of transformations, or
inference steps that chain rules; and a time limit.

 Classic examples include questions that are easily an-
swered by any intelligent agent that can understand the
meanings of the words involved, such as “What colour is a
blue car?” or simple general knowledge like “What is an
amoeba?” and “How long is a minute?” – questions that Cyc
has the knowledge to answer. Though Cyc cannot answer
every conceivable commonsense question, its ability to ap-
ply common sense to both in-domain and out-of-domain
problems is expected to give MySentient Answers the gen-
eral look and feel of intelligence.

For DQA queries: the microtheory is the user’s session;
the temporal index and granularity are “any time”, allowing
the system to find temporally-qualified answers; the number
of transformations and the like are determined by the nature
of the question (primarily the main predicate); and the time
is distributed from a (configurable) 30 second budget.

6.1 Question-types of Interest
The problem of parsing arbitrary English to a formal, logical
representation is only partly solved. Thus a deductive ques-
tion answering system that accepts arbitrary NL input will
necessarily be limited both in the expressiveness of the for-
mal language (the vocabulary), and in inherently difficult
problems in resolving quantifier scope, negation, implica-
ture, and context-sensitivity. At the same time, IR and pas-
sage-retrieval systems are limited by their lack of under-
standing: Even systems with the ability to classify a ques-
tion as “about” a type, or as falling into a certain, common
class, are fragile in some areas. Such systems are unable to
handle questions that require comprehension of the relevant
document corpus; though such systems can often return pas-
sages that contain an answer to the user’s question, many
questions do not have answers encapsulated by a particular
passage in the text, but are nevertheless answerable from the
content contained within the entire document set.

Figure 7: Cyc's DQA module gives answers for a
definitional question both from a glossary, and from
a formal representation of the concept.

 Given these restrictions, the Cyc-based Deductive QA
module was optimized for questions that, given the corpus
and test queries, appear representative of prevalent question

types. Significantly, the cost of targeting DQA to handle
such question types is amortized by its reusability. This is in
distinction to NLP-based QA systems, which generally need
to be re-trained from scratch against a new corpus.

Figure 6: DQA answering a commonsense question
not covered in the document corpus.

Definitional Questions
Questions in this category are of the familiar, “What is …?”,
“Who is … ?” “Define …” “What can you tell me about
…?” variety. Though many corpora, including the Motley
Fool UK corpus used to develop MySentient Answers, in-
clude glossaries of important concepts, in general a passage-
retrieval system will only succeed in reliably returning glos-
sary entries if one of the two following conditions hold: 1)
the glossary entries are formatted so as to contain “tip-off”
key-words or phrases (e.g., “APR is defined as …”) or dis-
tinctive formatting (e.g., a bolded entry followed by a colon)
that the system is trained to recognize; or 2) the question-
answering system is sufficiently permissive in what it will
return, that any passage (including the glossary entry) that
contains the relevant query-word will be picked up.
 Cyc’s question-answering strategy for definitional ques-
tions is to infer good answers using the predicates #$defini-
tionalDisplaySentence and #$interestingSentence that relate
statements to some of the concepts that they are centrally
about. The Cyc Knowledge Base contains a handful of gen-
eral rules that allow Cyc to return sentences constructed
from definitional predicates, such as #$isa and #$genls, as
well as others. If Cyc has the glossary entry for a term, it
will use these rules to construct an “interesting sentence” for
that term that includes the glossary entry.

Commonsense, Off-topic Questions
In general, IR and passage-retrieval systems are limited by
the corpora they draw upon in answering questions. While
answering (sometimes difficult or technical) questions rele-
vant for the domain defined by the corpora, they can appear
quite intelligent or insightful. However, such systems are,
by their very nature, easily “gamed” by users who wish to
disabuse an otherwise sympathetic audience of the notion
that the system is genuinely smart, or capable of understand-
ing what’s being asked.

 KRAQ'05 - IJCAI workshop - July 30th 2005 66

Taxonomic Questions
Taxonomic questions are those that ask the system to iden-
tify sub-types, or sub-classes of a focal concept. For exam-
ple, “what are the different types of bank account?” is an-
swered by producing a list or hierarchy of bank account-
types. Such questions are relatively easy for any ontology-
based deductive system, yet somewhat difficult for a system
that relies solely on IR or passage-retrieval techniques.

Procedural Questions
In many document corpora, “recipes” for achieving a goal
are not condensed into a single passage or even article. Of-
ten, process knowledge is spread across a corpus, or por-
tions of it are not made explicit, left to the reader as an exer-
cise in small-step inference. Under such circumstances,
procedural questions can be difficult for a passage-retrieval
system to answer.

The DQA module succeeds in these circumstances, draw-
ing upon Cyc’s hierarchy of event types and vocabulary for
describing the structure of events. The CycL predicate
#$properSubEvents identifies the top-level sub-events of an
event, and temporal relations such as #$startsAfterEndingOf
and #$startsNoEarlierThanStartingOf describe the order of
sub-events. Each sub-event can have its own internal struc-
ture in similar fashion, allowing for a recursively con-
structed, arbitrarily deep representation of an event.

In Cyc, processes and their stages are represented as col-
lections of events, so that process knowledge is represented
with rules concluding to #$properSubEvents and the tempo-
ral ordering predicates described above. Specialized “rule
macro” vocabulary allows for a compact representation of
these often complex rules, making efficient reasoning about
processes possible.

When asked a procedural “How do I …?” question, the
NL-to-CycL parser identifies the collection of events (the
process) referred to. The DQA module then asks the Cyc
KB for all top-level stages in temporal order. The result is a

fully bound CycL sentence that relates a process to this list,
which is then paraphrased appropriately in NL. The output
is a step-by-step description of the process.

Cost/Benefit Questions

Figure 9: In answer to a "Why" question, the DQA
module lists possible costs and benefits.

Questions in this category often take forms such as, “Why
should I …?” or “What’s the best reason to …?”. Again, a
passage retrieval system will do well on such questions in-
sofar as the corpus contains explicit FAQ pages or articles
with helpful headings or titles such as “Why should I …?”
Even then, either the question-answering system must have
received just the right input (e.g., a “Should I X or Y?” input
to get back a passage entitled “Should we X or Y?”) or else
contain an internal table of equivalent phrasings (e.g., a
question of the form, “Should I X or Y” is answerable by
any passage that contains, “Why would I X over Y”). In
either case, unless a passage contains some sort of explicit
header or clue as to its relevance to this area, it will be
passed over by a passage retrieval system.

Figure 8: DQA answers a "How do I ...?" question
with a step-by-step procedure.

In the DQA module, such questions are handled by ask-
ing Cyc for CycL sentences that are salient for consideration
in a cost/benefit analysis of a given action type. Using the
higher-order features of CycL, these sentences are inferred
from assertions that identify certain predicates as relevant
for cost/benefit analysis. For example, the assertion:
 (#$costBenefitPredForSitType #$typePromotesRisk

#$Event #$doneBy 1)
tells the inference engine that the relation #$typePromotes-
Risk is relevant in a cost/benefit analysis of “doing” any
type of event. (The “1” is the argument position of the
event-type in the #$typePromotesRisk sentence.) Thus, if
the user asks, “Should I bank online?”, Cyc tries to prove a
sentence of the form:
 (#$typePromotesRisk #$OnlineBanking …)
For example:
 (#$typePromotesRisk #$OnlineBanking

#$performedBy #$IdentityTheft #$victim)

 KRAQ'05 - IJCAI workshop - July 30th 2005 67

which means that “performing” an online banking event
increases ones vulnerability to being the victim of identity
theft. Upon proving such a sentence, it is returned as a
binding for the original query, and paraphrased into English.

6.2 Alternative DQA Strategies
As noted above, the general problem of parsing arbitrary
English into inference-friendly CycL has not been fully
solved. As such, the discourse model will not always con-
tain a CycL translation of the user’s question; indeed, for
unfamiliar or complicated question-types, this will fre-
quently be the case. Also, even when a CycL interpretation
is available, there is no guarantee that the knowledge needed
to answer the question is in the Cyc Knowledge Base.
Thus, in order to be as effective as possible, the DQA mod-
ule has been designed to reason from incomplete knowl-
edge: it can invoke a number of lower-confidence question-
answering strategies that do not depend on the total success
of NL-to-CycL parsing. Because these strategies operate
from a state of less information than the primary question-
answering strategy, they are necessarily more brittle – spe-
cifically, more prone to returning inappropriate (but factu-
ally correct) answers. Nevertheless, these strategies provide
some level of robustness against parse-failure or unantici-
pated discourse modeling problems, and have indeed re-
sulted in a general increase in coverage over the target ques-
tion-set. These strategies are described in order of the level
of discourse model information required for them to apply,
from most to least:

Topic-based Responsiveness
This strategy uses partial parse information, based on the
translation into CycL of identified key phrases from the
user’s query. Where two or more phrases have been suc-
cessfully assigned Cyc semantics, this strategy searches for
interesting or informative links between them. For example,
if asked a question from which only “LSE” and “AIM” are
understood, Cyc would return a sentence about their rela-
tionship, such as “The Alternative Investment Market is a
junior market to the London Stock Exchange.”

Interesting Sentences about Terms
Like the Topic-based Responsiveness strategy, this strategy
also works by reasoning over the CycL semantics of phrases
from the query. This strategy, however, is more broadly
applicable (and so of lower confidence), using individual
query phrases and #$interestingSentence reasoning to return
summary or definitional information for each phrase.

Glossary-driven Sub-string Matching
Unlike the other backup strategies, Glossary-driven Sub-
string Matching does not require that any part of the ques-
tion be parsed. If a query matches the title of a slurped
glossary entry, then that glossary entry is returned as the
answer. This strategy thus guards against knowledge gaps
in the Cyc KB (e.g., “Free Float” is not represented in the
Knowledge Base, but the Motley Fool UK glossary entry for
that term is), as well as unanticipated parser failure for defi-

nitional questions that would otherwise return glossary en-
tries using standard question-answering methods.

7 Natural Language Generation
For a system that uses a formalized representation of the
input question and performs deduction against a knowledge
base whose content is also represented formally, the prob-
lem of presenting the results of a query to the end user in a
readable and useful way is especially difficult.
 Many systems that perform deduction will typically re-
duce the problem to that of generating natural-looking NL
from the bindings that the inference engine returns in re-
sponse to an open query. Others will attempt to augment
this process by providing additional “context” – terse pas-
sages of relevant text, links to web-pages relevant to some
of the entities returned as bindings, or general information
in the knowledge base about those entities [Vargas-Vera and
Motta, 2004; Breck et al., 1999].

The generation of English answer-text from the results of
deductive question answering is handled in MySentient An-
swers in a very different way. The answer-text generator
has access not only to the variable bindings, but also to the
proof tree produced by the Inference Engine, and hence to
the supporting assertions in the KB. This allows for more
informative and nuanced presentation of inference answers.

For instance, given the query “Who are the officers of
Martha Stewart Omnimedia?” the Inference Engine finds
two bindings: Susan Lyne and Martha Stewart.

Rather than somewhat misleadingly presenting these two
bindings without qualification, the answer-text generator
inspects the inference datastructures to find that the “Susan
Lyne” answer is supported by the following line of reason-
ing:

1. Susan Lyne is asserted to hold the position of Chief
Executive Officer in Martha Stewart Omnimedia.
This assertion is in a microtheory whose contents
are temporally qualified to hold during the time pe-
riod from November 11, 2004 through the present.

2. CEO is a specialization of Officer in Organization.
3. If someone holds a specialized version of some po-

sition in an organization, the person may be con-
cluded to hold the more general position.

Of these supports, (2) and (3) do not mention the binding
“Susan Lyne,” so Cyc chooses to present (1), and passes it
to the CycL-to-NL paraphrase module. This module is in-
dependent of the explanation-generation module, and is
simply tasked with rendering a CycL sentence into English.
It uses the Cyc Lexicon (part of the Cyc KB), which con-
tains mappings from atomic concepts onto names and lexi-
cal entries, and phrase-generation templates for functors.
These templates are recipes for the compositional construc-
tion of natural language phrases (not strings) that have syn-
tactic and semantic information. This information permits
grammatical manipulation, such as tense, agreement or sen-
tential force (e.g. question or statement.). Once the phrase
is built, a string is generated from it, and returned.

For the Susan Lyne assertion, this module uses the tempo-
ral qualification on the assertion's microtheory to generate

 KRAQ'05 - IJCAI workshop - July 30th 2005 68

Topic Redirects: This suggests potentially relevant infor-
mation sources. It is intended that the author can suggest
key topics, and relevant resources (with associated URLs).

the adverbial phrase “since November 11, 2004” and to as-
sign present perfect tense to the head verb, producing this
sentence:

Are you interested in sellers of mortgages? Since November 11, 2004, Susan Lyne has held the po-
sition of chief executive officer in Martha Stewart Liv-
ing Omnimedia.

Interview Questions: These use Cyc's knowledge base to
determine what sorts of information about discourse entities
is commonly available and important to know in order to
induce relevant questions:

Using a similar approach, the following answer text for
the “Martha Stewart” binding is produced:

What breed is your dog? From 1998 to March 15, 2004, Martha Stewart held
the position of corporate president in Martha Stewart
Living Omnimedia.

Such interview questions are intended not only to make it
easier for QA modules to answer the user's question, but
also to gather profile information about the user. This tech-
nology is based on the Salient Descriptor first developed for
the KRAKEN system as part of DARPA’s Rapid Knowl-
edge Formation (RKF) programme [Witbrock, et al., 2003].

Thus the answer text includes not only the bindings
found, but also the temporal qualification for each and the
specific position held, while omitting more general, less
pertinent facts and rules used to reach the conclusions. Fur-
thermore, it does so using general principles for determining
the best support to show, and existing KB assertions and
paraphrase functionality.

8.2 Anaphora Resolution
Cyc’s discourse modeling enables the system to make sig-
nificant headway into the problem of resolving anaphoric
pronouns and noun phrases, which has been recognized as a
difficult and important problem in question answering
[Vicedo and Ferrandez, 2000].

8 Current Limitations and Future Directions
MySentient Answers 1.0 is a fully functional question-
answering system, but certain areas require further devel-
opment before full integration. These include clarification,
anaphora resolution, external knowledge sources, and au-
thoring tools.

The anaphora resolution implemented for MySentient An-
swers makes the simplifying assumptions that 1) definite
NPs can be the antecedents of anaphoric NPs and pronouns,
and 2) such NPs refer to instances of the relevant type (so
“the shark” is interpreted as referring to a particular fish,
though there are contexts where it does not, e.g. “The shark
is a ferocious predator.”). Cyc’s anaphora resolution pro-
ceeds by searching backward through the discourse model
for the most recent possible antecedent, eliminating candi-
dates by applying both linguistic and semantic knowledge.
On the linguistic side, for example, “he,” being singular,
would not resolve to “us,” which is plural. On the semantic
side, the referent of “he,” presumably a male animal, cannot
be identical to the referent of “my mother,” who is repre-
sented in the discourse model as a woman.

8.1 Clarification
As described above, the MySentient Answers system in-
cludes a module to generate clarification questions that sug-
gest replacement questions from the expansions generated
by the User Profile Manager. Use of the Cyc KB and infer-
ence engine will allow the system to not only generate more
sophisticated questions for the user, but also solicit useful
information about the user. As presently envisioned, this
falls into the following types:
Term-Level Disambiguation: This type of question seeks
to disambiguate a term (typically a Noun Phrase) from
within a question. 8.3 External Knowledge Sources

What did you mean by "IRA"? … Cyc’s inference engine has the capability of drawing infor-
mation, not only from its knowledge base, but also from
external knowledge sources such as databases, and struc-
tured websites [Masters and Güngördü, 2003]. Information
from multiple external sources (and the KB) can be com-
bined in one inference.

Sentence-Level Disambiguation: This type of question
seeks to resolve ambiguity at the sentence level by suggest-
ing replacements for the entire question.

What did you mean by 'Can I get a mortgage and rent
the house out?'? …

Precisification: This sounds very similar to Sentence-Level
Disambiguation but is subtly different in both implementa-
tion and effect. This attempts to take a (possibly answer-
able) question, and suggest more precise forms for it. The
new questions can not only help QA systems find answers,
but will allow them to filter out irrelevant ones.

There are two main difficulties associated with use of this
technology in a system such as MySentient Answers: the
task of authoring the formal semantics of an external knowl-
edge source is still time-consuming and requires extensive
training; and the use of external sources, especially web-
sites, generally makes it difficult to ensure that the system is
fast enough to be responsive to the user. How big is Afghanistan? →

Which of the following questions did you mean to ask?
What is Afghanistan's population? 8.4 Authoring Tools What is Afghanistan's gross domestic product?

As described above, the prototype system was specialized
for the Motley Fool UK domain by a combination of proto-
type authoring tools and manual ontological engineering. It
is anticipated that, eventually, the customer will perform

What is Afghanistan's land area?

 KRAQ'05 - IJCAI workshop - July 30th 2005 69

almost all authoring. A number of authoring tools are
planned to support both NLP and Cyc-based modules.
Those that most directly support Cyc's rôle are:
Concept Extractor: This component processes domain-
relevant documents to identify concepts (primarily noun
phrases), relate them to existing Cyc terms, and conjecture
type information for novel terms. This uses Cycorp's Noun
Learner, developed under Phase I of the AQUAINT project.
Coverage Checker: This component uses Cyc's Knowledge
Base to ensure that the terms identified by the Concept Ex-
tractor are adequately represented, and identify knowledge
gaps in the form of questions. Like the Interview clarifica-
tion strategy described in section 8.1, the coverage checker
is based on the Salient Descriptor.
Term Lexifier: This component, allows an author to relate
Cyc terms (both denotational and sentential) to their natural
language representations. These mappings can be used for
both parsing and paraphrase generation. This is based on
emerging Cycorp technology, and early RKF experiments.
Ontology Editor: This component projects a stratified di-
graph onto a relevant subset of the Cyc ontology, permitting
a GUI to display the graph to enable browsing of and modi-
fication to the ontology. This component ties together the
foregoing components, by visualizing of the results of the
Concept Extractor, allowing the user to answer the Concept
Extractor's questions, and providing access the Term Lexi-
fier. This is novel technology developed for this project.

Acknowledgments
The authors would like to thank MySentient, especially
Mike Mendoza, John Kranz, Dave Wade-Stein, Scott Gos-
ling, Sean O’Connor, Mike Krell, and Rob Halsted. Also,
the authors thank CNLP, in particular, Elizabeth Liddy, Ei-
leen Allen, Ozgur Yilmazel, Nancy McCracken, and Niran-
jan Balasubramanian. Finally, the authors acknowledge the
other contributors to the MySentient project at Cycorp:
Robert C. Kahlert, Karen Pittman, Dave Schneider, Ben
Gottesman, Peter Wagner, Linda Aramil, Jennifer Sullivan,
Larry Lefkowitz, Michael Witbrock, Steve Reed, Matt Wat-
son, Jim Zaiss, Blake Shepard, Chris Deaton, Casey
McGinnis, Brett Summers, Kevin Knight, Pace Reagan,
Keith Goolsbey, Kathy Panton, Chester John, and Amanda
Vizedom.

References
[Friedland et al., 2004] Noah S. Friedland, Paul G. Allen,

Gavin Matthews, Michael Witbrock, David Baxter, Jon
Curtis, Blake Shepard, Pierluigi Miraglia, Jurgen An-
gele, Steffen Staab, Eddie Moench, Henrik Oppermann,
Dirk Wenke, David Israel, Vinay Chaudhri, Bruce Por-
ter, Ken Barker, James Fan, Shaw Yi Chaw, Peter Yeh,
Dan Tecuci, Peter Clark. Project Halo: Towards a Digi-
tal Aristotle. AI Magazine, 25(4): 29-48, Winter 2004.

 [Diekema, et al., 2000] Diekema, A. Liu, X., Chen, J.,
Wang, H., McCracken, N., Yilmazel, O., and Liddy,E.D.
Question Answering: CNLP at the TREC-9 Question
Answering Track. In Proceedings of the 9th Text RE-

trieval Conference, pages 501–510, Gaithersburg, MD,
USA, November 2000.

[Panton, et al., 2002] Kathy Panton, Pierluigi Miraglia,
Nancy Salay, Robert C. Kahlert, David Baxter, Roland
Reagan. Knowledge Formation and Dialogue Using the
KRAKEN Toolset. In Proceedings of the Eighteenth Na-
tional Conference on Artificial Intelligence and Four-
teenth Conference on Innovative Applications of Artifi-
cial Intelligence, pages 900–905, Edmonton, Canada,
July 28–August 1, 2002.

 [Burns and Davis, 1999] K.J. Burns and A.R. Davis. Build-
ing and Maintaining a Semantically Adequate Lexicon
Using Cyc. In Breadth and Depth of Semantic Lexicons,
2(3):397–425, June 1992.

[Hovy, et al., 2000] Eduard Hovy, Laurie Gerber, Ulf
Hermjakob, Michael Junk, and Chin-Yew Lin. Question
Answering in Webclopedia. In Proceedings of the 9th
Text REtrieval Conference, pages 655–664, Gaithers-
burg, MD, USA, November 2000.

[Bilotti, 2004] Matthew W. Bilotti, Query Expansion Tech-
niques for Question Answering. Masters Thesis, Massa-
chusetts Institute of Technology, 2004.

[Bacchin and Melucci, 2004] Michela Bacchin and Mas-
simo Melucci, Expanding Queries using Stems and
Symbols. In Proceedings of the 13th Text REtrieval Con-
ference, Gaithersburg, MD, USA, November 2004.

[Vargas-Vera and Motta, 2004] Maria Vargas-Vera and
Enrico Motta. AQUA – Ontology-based Question
Answering System. In Proceedings of the Third Mexican
International Conference on Artificial Intelligence,
pages 468–477, Mexico City, Mexico, April 2004.

[Breck et al., 1999] Eric Breck, John Burger, Lisa Ferro,
David House, Marc Light, Inderjeet Mandi. A Sys
called Qanda. In Proceedings of the Eighth Text RE-
trieval Conference, pages 499–506, Gaithersburg, MD,
USA, November 1999.

[Witbrock et al., 2003] Michael Witbrock, David Baxter,
Jon Curtis, Dave Schneider, Robert Kahlert, Pierluigi
Miraglia, Peter Wagner, Kathy Panton, Gavin Matthews,
Amanda Vizedom. An Interactive Dialogue System for
Knowledge Acquisition in Cyc. In Proceedings of the
Workshop on Mixed-Initiative Intelligent Systems, pages
138–145, Acapulco, Mexico, August 2003.

[Vicedo and Ferrandez, 2000] Jose L. Vicedo and Antonio
Ferrandez. Importance of Pronominal Anaphora Resolu-
tion in Question Answering Systems. In Proceedings of
the 38th Annual Meeting of the Association for Compu-
tational Linguistics, pages 555–562, Hong Kong, China,
October 2000.

 [Masters and Güngördü, 2003] Chip Masters and Zelal
Güngördü, Structured Knowledge Source Integration: A
Progress Report. In Proceedings of the International
Conference on Integration of Knowledge
Intensive Multi-Agent Systems (KIMAS 03). Pages 562-
566, Piscataway, New Jersey, 2003.

KRAQ'05 - IJCAI workshop - July 30th 2005 70

Knowledge Representation for Semantic Entailment and Question-Answering

Rodrigo de Salvo Braz Roxana Girju Vasin Punyakanok Dan Roth Mark Sammons
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL, 61801, USA

{braz, girju, punyakan, danr, mssammon }@cs.uiuc.edu

Abstract
Semantic entailmentis the problem of determining
if the meaning of a given sentence entails that of
another.Question-answeringcan be reduced to this
problem by rephrasing the question as a statement
that is entailed by correct answers. In[Brazet al.,
] we present a principled approach to semantic en-
tailment that builds on inducing re-representations
of text snippets into a hierarchical knowledge rep-
resentation along with an optimization-based infer-
ential mechanism that makes use of it to prove se-
mantic entailment.
This paper provides details and analysis of the
knowledge representation and knowledge resources
issues in the above approach. We analyze our sys-
tem’s behavior on a collection of question-answer
pairs and use it to motivate and explain some of
the design decisions in our hierarchical knowledge
representation, that is centered around a predicate-
argument type abstract representation of text.

1 Introduction
Semantic entailmentis the task of determining, for example,
that the sentence: “WalMart defended itself in court today
against claims that its female employees were kept out of jobs
in management because they are women” entails that “Wal-
Mart was sued for sexual discrimination”.

Determining whether the meaning of a given text snippet
entailsthat of another or whether they have the same meaning
is a fundamental problem in natural language understanding
that requires the ability to abstract over the inherent syntac-
tic and semantic variability in natural language[Dagan and
Glickman, 2004]. This challenge is at the heart of many high
level natural language processing tasks including Question
Answering, Information Retrieval and Extraction, Machine
Translation, and others that attempt to reason about and cap-
ture the meaning of linguistic expressions.

Research in natural language processing in the last few
years has concentrated on developing resources that provide
multiple levels of syntactic and semantic analysis, resolve
context sensitive ambiguities, and identify relational struc-
tures and abstractions (from syntactic categories likePOStags
to semantic categories such as named entities).

However, beyond these resources, in order to support fun-
damental tasks such as inferring semantic entailment between
two text snippets, there needs to be a unified knowledge rep-
resentation of the text that(1) provides a hierarchical encod-
ing of the structural, relational and semantic properties of the
given text,(2) is integrated with learning mechanisms that can
be used to induce such information from raw text, and(3) is
equipped with an inferential mechanism that can be used to
support inferences over such representations.

Relying on general purpose knowledge representations —
FOL, probabilistic or hybrids — along with their correspond-
ing general purpose inference algorithms does not resolve the
key issues ofwhat to representandhow to derive a sufficiently
abstract representationand, in addition, may lead to brittle-
ness and complexity problems. On the other hand, relying
only on somewhat immediate correspondences between ques-
tion and candidate answers, such as shared words or shared
named entities, has strong limitations. We avoid some of
these problems byinducingan abstract representation of the
text which does not attempt to represent the full meaning of
text, but provides what could be seen as ashallow seman-
tic representation; yet, it is significantly more expressive than
extraction of straightforward phrase-level characteristics. We
induce this into a description-logic based language that is
more restricted than FOL yet is expressive enough to allow
both easy incorporation of language and domain knowledge
resources and strong inference mechanisms.

Unlike traditional approaches to inference in natural lan-
guage[Schubert, 1986; Moore, 1986; Hobbset al., 1988]
our approach (1) makes use ofmachine learningbased re-
sources in order to induce an abstract representation of the
input data, as well as to support multiple inference stages and
(2) models inference as anoptimizationprocess that provides
robustness against inherent variability in natural language,
inevitable noise in inducing the abstract representation, and
missing information.

In this paper, we focus on the hierarchical knowledge rep-
resentation used by our system. We also present a brief expla-
nation of the inference algorithm — described in detail in a
companion paper[Brazet al.,] — and a detailed experimen-
tal analysis of our system that highlights the advantages of the
hierarchical approach. Along with the formal definition and
justification developed here for our computational approach
to semantic entailment, our knowledge representation and al-

KRAQ'05 - IJCAI workshop - July 30th 2005 71

gorithmic approach provide a novel solution that addresses
some of the key issues the natural language research commu-
nity needs to resolve in order to move forward towards higher
level tasks of this sort. Namely, we provide ways to represent
knowledge, either external or induced, at multiple levels of
abstractions and granularity, and reason with it at the appro-
priate level. The preliminary evaluation of our approach is
very encouraging and illustrates the significance of some of
its key contributions.

1.1 General Description of Our Approach
We reduce the problem of question answering to that of tex-
tual semantic entailment. Whether a candidate text actually
answers a question can be inferred by deciding if the question,
converted to a statement with a placeholder, is entailed by the
candidate answer. For example, “John bought the book yes-
terday downtown” is a correct answer to the question “Who
bought the book?” because it entails “XXX bought the book”
(the placeholder can be thought of as an existentially quanti-
fied variable).

Specifically, given two text snippetsS (source) andT (tar-
get) where typically, but not necessarily,S consists of a short
paragraph andT , a sentence, textual semantic entailment is
the problem of determining ifS|=T , which we read as “S
entailsT ”. This informally means thatmost people would
agree that the meaning ofS implies that ofT . More formally,
we say thatS entailsT when some representation ofT can
be “matched” (modulo some meaning-preserving transforma-
tions to be defined below) with some (or part of a) represen-
tation ofS, at some level of granularity and abstraction. The
approach consists of the following components:

KR: A Description Logic based hierarchical knowledge
representation, EFDL (Extended Feature Description Logic),
[Cumby and Roth, 2002], into which we re-represent the sur-
face level text, augmented with induced syntactic and seman-
tic parses and word and phrase level abstractions.

KB: A knowledge base consisting of syntactic and seman-
tic rewrite rules, written in EFDL.

Subsumption: An extended subsumption algorithm which
determines subsumption between EFDL expressions (repre-
senting text snippets or rewrite rules). “Extended” here means
that the basic unification operator is extended to support sev-
eral word level and phrase level abstractions.

First, a set of machine learning based resources are used
to induce the representation forS and T . The entailment
algorithm then proceeds in two phases: (1) it incrementally
generates re-representations of the original representation of
the source textS by augmenting it with heads of subsumed re-
write rules, and (2) it makes use of an optimization based (ex-
tended) subsumption algorithm to check whether any of the
alternative representations of the source entails the represen-
tation of the targetT . The extended subsumption algorithm
is used both in checking final entailment and in determining
when and how to generate a re-representation in slightly dif-
ferent ways.

Figure 1 provides a graphical example of the representa-
tion of two text snippets, along with a sketch of the extended
subsumption approach to decide the entailment.

2 Hierarchical Knowledge Representation

Our abstract representation of text passages is based on a
predicate-argument structure at both semantic and syntac-
tic levels. The semantic representation captures predicate-
argument relations following the PropBank[Kingsburyet al.,
2002] representation. PropBank is a semantically annotated
version of the Wall Street Journal portion of Penn Treebank
and provides consistent semantic role labels across different
syntactic realizations of the same verb as shown the in fol-
lowing example:

[Mary]/ARG0 left [the room]/ARG1.

Here,ARG0 represents theleaverandARG1 the thing leftas
arguments of the verbleave.

Currently, we focus only on verb-argument relations, but
our representation can be easily extended to other types of
predicates, such as nouns, adjectives, and adverbs. This rep-
resentation is induced by a machine learning based Semantic
Role Labeler ([Punyakanoket al., 2004]) that identifies the
verb’s arguments and semantically annotates them with cor-
responding PropBank labels in context.

At the syntactic level, the representation captures full parse
information for the text considered. For this, we rely on
Collin’s parser[Collins, 1999]. For example,

[Mary]/NP left [the room]/NP/ [in a hurry]/PP,

where the two noun phrases and the prepositional phrase are
attached to the verbleft.

Besides these, we also consider a word-level representa-
tion. Each word is annotated with various information such
as part-of-speech and lemma.

The abstract representation is also enriched with other
types of knowledge, such as named entities (eg, “John
Smith” is a PERSON), qualifier labels (eg, “some people”,
“no children”), negation (eg, “didn’t succeed”), modality (eg,
“could”, “might”), temporal information (eg, “after an event”,
“before an action”), and coreference (both pronoun and name
coreference).

The most significant aspect of our knowledge representa-
tion is itshierarchy. It captures the semantic, syntactic, and
lexical levels of abstraction thus described and is used by the
inference algorithm to exploit these inherent properties of the
language. The hierarchical representation provides flexibil-
ity as the source and target snippets can be matched at the
corresponding level. Most importantly, it provides a way to
abstract over variability in natural language by supporting in-
ference at a higher than word level, and thus also supports the
inference process in recovering from inaccuracies in inducing
the representation. Consider, for example, the following pair
of sentences, in which processing at the semantic parse level
exhibits identical structure, despite significant lexical level
differences.

KRAQ'05 - IJCAI workshop - July 30th 2005 72

N’6

N’2

N’1 N’2

BEFOREBEFORE

N’3 N’4

BEFORE

S2’: Jazz singer Marion Montgomery died of lung cancer on Monday. T: The singer died of carcinoma.

WORD: singer
LEMMA: singer
POS: NN
PHHEAD: NP

WORD: died
LEMMA: die
PHHEAD: VBD

WORD: of
POS: IN

WORD: carcinoma
LEMMA: carcinoma
POS: NN
PHHEAD: NP

N’7

ID
ID ID

N4 N5

BEFOREBEFORE

PHTYPE: NP

PHTYPE: VP

N6

N13

BEFORE

WORD: singer
LEMMA: singer
POS: NN

WORD: died
LEMMA: die
PHHEAD: VP

WORD: of
POS: IN

WORD: cancer
LEMMA: cancer
POS: NN
PHHEAD: NP

N16

PHTYPE: PP

ID

ID
ID

WORD: Jazz
LEMMA: Jazz
POS: NN

WORD: Marion
POS: NN

WORD: Montgomery
POS: NN
PHHEAD: NP

N15

WORD: lung
LEMMA: lung
POS: NN

WORD: Monday
POS: NNP
PHHEAD: NP

 ARG1

BEFORE

N17

ID

WORD: on
POS: IN

 ARGM-TMP

PHTYPE: PP

PHTYPE: NP
NETYPE: DISEASE PHTYPE: NP

NETYPE: TIME

PHTYPE: NP
NETYPE: DISEASE

N8N7

N18

N3N2N1 N10N9

N14

N’5

ID

H0

H2

H1

H0

H1

H2

BEFOREBEFOREBEFOREBEFOREBEFORE

N12N11
PHTYPE: NP
NETYPE: PERSON

PHTYPE: NP
NETYPE: PROF.

PHTYPE: NP
NETYPE: PROF.

 SRLTYPE: ARG1 SRLTYPE: ARGM-TMP

N19 N20

N24

N23N22

N21

PHTYPE: NP PHTYPE: PP PHTYPE: PP

S: Lung cancer put an end to the life of Jazz singer Marion Montgomery on Monday.

S1’: Lung cancer killed Jazz singer Marion Montgomery on Monday.

PHTYPE: VP

N’9

PHTYPE: PP

SRLTYPE: ARG0

N’12

N’2

PHTYPE: VP

N’8

N’10

PHTYPE: NP
NETYPE: PROF.

N’11

ID

ID

PHTYPE: VP

PHTYPE: PP

WORD: the
POS: DT

BEFORE

N’13

Figure 1: Example ofRe-represented Source & Targetpairs as concept graphs. The original source sentenceS generated
several alternatives includingS′1 and the sentence in the figure (S′2). Our algorithm was not able to determine entailment of the
first alternative (as it fails to match in the extended subsumption phase), but it succeeded forS′2. The dotted nodes represent
phrase level abstractions.S′2 is generated in the first phase by applying the following chain of inference rules: #1 (genitives):
“Z’s W →W of Z”; #2: “X put end to Y’s life→ Y die of X”. In the extended subsumption, the system makes use of WordNet
hypernymy relation (“lung cancer” IS-A “carcinoma”) and NP-subsumption rule (“Jazz singer Marion Montgomery’” IS-A
“singer”). The rectangles encode the hierarchical levels (H0,H1,H2) at which we applied the extended subsumption. Also
note that in the current experiments we don’t consider noun plurals and verb tenses in the extended subsumption, although our
system has this capability.

S: “[The bombers]r/ARG0 managed[to enter [the embassy
building]/ARG1]/ARG1.”1

T: “[The terrorists]/ARG0 entered[the edifice]/ARG1.”

On the other hand, had the phrasefailed to enterbeen used
instead ofmanaged to enter, a negation attribute associated
with the main verb would prevent this inference. Note that
failure of the semantic parser to identify the semantic argu-
mentsARG0 andARG1 will not result in a complete failure
of the inference, as described in the inference section: it will
result in a lower score at this level that the optimization pro-
cess can compensate for (in the case that lower level inference
occurs).

In the following subsection we present a formal description
of the knowledge representation.

2.1 Formal Description of The Knowledge
Representation

The hierarchical representation of natural language sentences,
defined formally over a domainD = 〈V,A, E〉 which con-
sists of a setV of typed elements, a setA of attributes of
elements, and a setE of relations among elements. We use a
Description-Logic inspired language,Extended Feature De-
scription Logic (EFDL), an extension of FDL[Cumby and

1The verbs “manage” and “enter” share the semantic argument
“[the bombers]/ARG0”.

Roth, 2002] . As described there, expressions in the language
have an equivalent representation asconcept graphs, and we
refer to the latter representation here for comprehensibility.

Nodesin the concept graph represent elements — words
or (multiple levels of) phrases.Attributes of nodes rep-
resent properties of elements. Examples of attributes
(they are explained in more detail later) include{LEMMA ,
WORD, POS, PREDICATE VALUE , PHTYPE, PHHEAD, NE-
TYPE, ARGTYPE, NEGATION}. The first three are word level,
the next three are phrase level,NETYPE is the named entity of
a phrase,ARGTYPE is the set of semantic arguments as de-
fined in PropBank[Kingsburyet al., 2002] and NEGATION
is a negation attribute. Only attributes with non-null values
need to be specified.

Relations(roles) between two elements are represented
by labeled edges between the corresponding nodes. Exam-
ples of roles (again, explained in more detail later) include:
{BEFORE, ARG0, . . .ARG5}; BEFOREindicates the order be-
tween two individuals, andARG0 represents the relations be-
tween a predicate (verb) and its argument..

Figure 1 shows a visual representation of a pair of sen-
tences rerepresented as concept graphs.

Concept graphs are used both to describe instances (sen-
tence representations) and rewrite rules. Details are omitted
here; we just mention that the expressivity of these differ -
the body and head of rules are simple chain graphs, for infer-
ence complexity reasons. Restricted expressivity is an impor-

KRAQ'05 - IJCAI workshop - July 30th 2005 73

tant concept in Description Logics[Baaderet al., 2003], from
which we borrow several ideas and nomenclature.

Concept graph representations are induced via state of
the art machine learning based resources that a part-of-
speech tagger[Even-Zohar and Roth, 2001], a syntactic
parser[Collins, 1999], a semantic parser[Punyakanoket al.,
2004; 2005], a named entity recognizer2, and a name corefer-
ence system[Li et al., 2004] with the additional tokenizer and
lemmatizer derived from WordNet[Fellbaum, 1998]. Rewrite
rules were filtered from a large collection of paraphrase rules
developed in[Lin and Pantel, 2001] and compiled into our
language; a number of non-lexical rewrite rules were gen-
erated manually. Currently, our knowledge base consists of
approximately 300 inference rules.

Rule representation
A rule is a pair(lhs, rhs) of concept graphs (lhs is the rule’s
body, while rhs is its head). These concept graphs are re-
stricted in that they must bepaths. This restricts the com-
plexity of the inference algorithm while keeping them useful
enough for our purposes. As a shorthand, more than one path
can be described inlhs, but in this case the rule is implic-
itly treated as more than one rule, each with one path and the
samerhs.

lhs describes a structure to match in the sentence concept
graph, whilerhs describes a new predicate (and related at-
tributes and edges) to be added to the sentence concept graph
in case there is a match.rhs can also describe attributes to
add to one or more existing nodes without adding a new pred-
icate, provided no new edges are introduced. These restric-
tions ensure that the data representation always remains, from
the subsumption algorithm’s perspective, a set of overlapping
trees.

Variables can be used inlhs so that we can specify which
entities have edges/attributes added byrhs. Rules thus al-
low rewrite of (part of) original sentence; e.g. we can encode
DIRT [Lin and Pantel, 2001] rules as predicate/argument
structures and use them to allow (parts of) the original sen-
tence to be re-represented via paraphrase, by linking existing
arguments with new predicates.

3 Algorithmic Semantic Entailment

This section follows the presentation in[Braz et al.,] and
formally defines and justifies our algorithmic approach to se-
mantic entailment.

LetR be a knowledge representation language with a well
defined syntax and semantics over a domainD. Specifically,
we think of elements inR as expressions in the language
or, equivalently, as the set of interpretations that satisfy it
[Lloyd, 1987]. Let r be a mapping from a set of text snip-
petsT to a set of expressions inR. Denote the images of
two text snippetsS, T , under this mapping byrS , rT , respec-
tively. Given the set of interpretations overD, let M be a
mapping from an expression inR to the corresponding set of
interpretations it satisfies. For expressionsrS , rT , the images

2Named entity recognizer from Cognitive Computation Group,
http://l2r.cs.uiuc.edu/∼cogcomp

of S, T underR, their model theoretic representations thus
defined are denotedM (rs), M (rt).

Conceptually, as in the traditional view of semantic entail-
ment, this leads to a well defined notion of entailment, for-
mally defined via the model theoretic view; traditionally, the
algorithmic details are left to atheorem proverthat uses the
syntax of the representation language, and may also incor-
porate additional knowledge in its inference. We follow this
view, and use a notion ofsubsumptionbetween elements in
R, denotedu v v, for u, v ∈ R, that is formally defined
via the model theoretic view – whenM(u) ⊆ M(v). Sub-
sumption between representations provides an implicit way
to represent entailment, where additional knowledge is con-
joined with the source to “prove” the target.

However, the proof theoretic approach corresponding to
this traditional view is unrealistic for natural language. Sub-
sumption is based onunification and requires, in order to
prove entailment, that the representation ofT is entirely em-
bedded in the representation ofS. Natural languages allow
for words to be replaced by synonyms, for modifier phrases to
be dropped, etc., without affecting meaning. An extended no-
tion of subsumption is therefore needed which captures sen-
tence, phrase, and word-level abstractions.

Our algorithmic approach is thus designed to alleviate
these difficulties in a proof theory that is too weak for natu-
ral language. Conceptually, a weak proof theory is overcome
by entertaining multiple representations that are equivalent in
meaning. We provide theoretical justification below, followed
by the algorithmic implications.

We say that a representationr ∈ R is faithful to S if r
and rS have the same model theoretic representation, i.e.,
M(r) = M(rs). Informally, this means thatr is the image
underR of a text snippet with the same meaning asS.

Definition 1 Let S, T be two text snippets with representa-
tions rS , rT in R. We say thatS|=T (read: S semantically
entailsT) if there is a representationr ∈ R that is faithful to
S and that is subsumed byrT .

Clearly, there is no practical way to exhaust the set of all those
representations that are faithful toS. Instead, our approach
searches a space of faithful representations, generated via a
set of rewrite rules in our KB.

A rewrite ruleis a pair(lhs, rhs) of expressions inR, such
that lhs v rhs. Given a representationrS of S and a rule
(lhs, rhs) such thatrS v lhs, the augmentation ofrS via
(lhs, rhs) is the representationr′S = rS ∧ rhs.

Claim 1 The representationr′S generated above is faithful to
S.

To see this, note that as expressions inR, r′S = rS ∧ rhs,
thereforeM(r′S) = M(rS) ∩ M(rhs). However, since
rS v lhs, and lhs v rhs, thenrS v rhs which implies
that M(rS) ⊆ M(rhs). Consequently,M(r′S) = M(rS)
and the new representation is faithful toS.

The claim gives rise to an algorithm, which suggests incre-
mentallyaugmentingthe original representation ofS via the
rewrite rules, and computing subsumption using the “weak”
proof theory between the augmented representation andrT .

KRAQ'05 - IJCAI workshop - July 30th 2005 74

Informally, this claim means that while, in general, augment-
ing the representation ofS with an expressionrhs may re-
strict the number of interpretations the resulting expression
has, in this case, since we only augment the representation
when the left hand sidelhs subsumesrS , we end up with
a re-representation that is in fact equivalent torS . There-
fore, given a collection of rules{(lhs, rhs)} we can chain
them, and incrementally generate faithful representations of
S. Consequently, this algorithm is a sound algorithm3 for se-
mantic entailment according to Def. 1, but it is not complete.
Its success depends on the size and quality of the rule set4

applied in the search.
Two important notes are in order. First, since rewrite rules

typically “modify” a small part of a sentence representation
(see Fig. 1), the augmented representation provides also a
compact way to encode a large number of possible represen-
tations. Second, note that while the rule augmentation mech-
anism provides a justification for an algorithmic process, in
practice applying rewrite rules is somewhat more compli-
cated. The key reason is that many rules have a large fan-out;
that is, a large number of heads are possible for a given rule
body. Examples include synonym rules, equivalent ways to
represent names of people (e.g., John F. Kennedy and JFK),
etc. We therefore implement the mechanism in two ways; one
process which supports chaining well, in which we explic-
itly augment the representation with low fan-out rules (e.g.,
Passive-Active rules); and a second, appropriate to the large
fan-out rules. In the latter, we abstain from augmenting the
representation with the many possible heads but take those
rules into account when comparing the augmented source
with the target. For example, if a representation includes
the expression “JFK/PER”, we do not augment it with all the
many expressions equivalent to “JFK” but, when comparing
it to a candidate in the target, such as “President Kennedy”,
these equivalencies are taken into account. Semantically, this
is equivalent to augmenting the representation. Instead of an
explicit list of rules, the large fan-out rules are represented as
a functional black box that can, in principle, contain any pro-
cedure for deciding comparisons. For this reason, this mech-
anism is calledfunctional subsumption.

The resulting algorithmic approach is therefore:
(1) Once an EFDL representation forS andT is induced,

the algorithm incrementally searches the EFDL rewrite rules
in KB to find a rule with a body that subsumes the repre-
sentation ofS. In this case, the head of the rule is used to
augmentthe EFDL representation ofS and generate a new
(equivalent) representation ofS. KB consists of syntactic and
semantic EFDL rewrite rules expressed at the word, syntactic
and semantic categories, and phrase levels; applying them re-
sults in new representationsS′i that capture alternative ways
of expressing the surface level text.

(2) Re-representationS′is are processed via the extended

3Soundness depends on a “correct” induction of the representa-
tion of the text; we do not address this theoretically here.

4The power of this search procedure is in the rules.lhs and
rhs might be very different at the surface level, yet, by satisfy-
ing model theoretic subsumption they provide expressivity to the
re-representation in a way that facilitates the overall subsumption.

subsumption algorithm against the representation ofT . The
notion of extended subsumption captures, just like the rewrite
rules, several sentence, phrase, and word-level abstractions.
The extended subsumption process is also used when deter-
mining whether a rewrite rule applies.

Rewrite rules and extended subsumption decisions take
into account relational and structural information encoded in
the hierarchical representation, which is discussed below. In
both cases, decisions are quantified as input to an optimiza-
tion algorithm that attempts to generate a “proof” thatS en-
tailsT .

4 Inference Model and Algorithm
As natural languages allow the expression of various concepts
in different ways without affecting meaning, an exact sub-
sumption approach that requires the representation ofT be
entirely embedded in the representation ofS′i is unrealistic.

Extended subsumption is designed to take advantage of the
hierarchical representation at various levels of abstraction at
the sentence, phrase, and word-level. Thus, nodes in a con-
cept graph are grouped into different hierarchical sets denoted
by H = {H0, . . . ,Hj} where a lower value ofj indicates
higher hierarchical level (more important nodes).

The inference procedure recursively matches the corre-
spondingHj nodes inT andS′i until it finds a pair whose
constituents do not match. In this situation, aPhrase-level
Subsumptionalgorithm is applied.

Figure 1 exemplifies the matching order betweenS′i andT
based on constraints imposed by the hierarchy.

We solve the subsumption problem by formulating an
equivalent Integer Linear Programming (ILP) problem5. De-
tails about the extended subsumption and the inference algo-
rithm can be found in a companion paper[Brazet al.,].

5 Experimental Evaluation and Discussion
We tested our approach on a collection6 of question-answer
pairs develop by Xerox PARC for a pilot evaluation of
Knowledge-Oriented Approaches to Question Answering un-
der the ARDA-AQUAINT program. The PARC corpus con-
sists of 76 Question-Answer pairs annotated as “true”, “false”
or “unknown” (and an indication of the type of reasoning re-
quired to deduce the label). The question/answer pairs pro-
vided by PARC are designed to test different cases of lin-
guistic entailment. The corpus concentrates on examples of
strict and plausible linguistic (lexical and constructional) in-
ferences and indicates whether it involves some degree of
background world knowledge. The focus is on inferences that
can be made purely on the basis of the meaning of words and
phrases. The questions are straightforward and therefore eas-
ily rewritten (by hand) into statement form. One sentence pair
involving qualifiers was reordered to test qualifier subsump-
tion.

5Despite the fact that this optimization problem is NP hard, com-
mercial packages have very good performance on sparse problems
such as this one[Xpress-MP,].

6The data is available by following the data link from
http://l2r.cs.uiuc.edu/∼cogcomp.

KRAQ'05 - IJCAI workshop - July 30th 2005 75

For evaluation reasons, we used only two labels in our ex-
periments , “true” and “false”, corresponding to “S entails
T” and “S does not entail T”. The “unknown” instances were
classified as “false”.

Of these76 sentence pairs,64 were perfectly tagged by our
Semantic Role Labeler (SRL), and were used as a noise-free
test set to evaluate our system.

This section describes the development of our system along
two dimensions: one adds more structure and annotation of
words and phrases, while the other adds semantic analysis
components. We first outline the progressive development
of our system from lexical level matching to the full system.
Then, for each version of the system and for each semantic
analysis component we give one or more examples of sen-
tence pairs affected by the new version/component. Finally,
we present a summary of the performance of each version of
the system on the noise-free and noisy data sets.

As baseline we use lexical-level matching based on a bag-
of-words representation with lemmatization and normaliza-
tion (LLM). We use this as the starting point for our system.
We then add Semantic Role Labeling, which gives us simple
verb-level predicate-argument structure; this version of the
system is labeled “SRL + LLM”. Finally, we add full parse
and shallow parse structure, which allows the parsing of the
SRL arguments into hierarchical structures with key entities
as the roots and modifiers as the leaves. This version of the
system, labeled “SRL + deep structure”, also uses Named En-
tity annotation from our Named Entity Recognizer (NER).

The system presently supports three semantic analysis
modules: verb phrase compression, discourse analysis, and
qualifier analysis. The different semantic analysis modules
depend on different levels of structure: verb phrase compres-
sion requires word order and part of speech; discourse anal-
ysis requires full parse information and part of speech, and
qualifier analysis requires full and shallow parse information
and part of speech. These components are added in the above
order for each version of the system that supports them.

Finally, there is a Knowledge Base module comprising
rewrite rules that encode paraphrase and inference informa-
tion. Most rules require SRL information, though some use
only word order and the words themselves. In evaluating the
LLM system with the KB enabled, only word-based rules can
fire.

A. LLM
We use the LLM as the starting point for our full entailment

system. The LLM system ignores a large set of stopwords,
which for certain positive sentence pairs allows entailment
when the more sophisticated systems require a rewrite rule
to map from the predicate in S to the predicate in T. For ex-
ample: since the list of stopwords includes forms of “be”,
the following sentence pair will be classified “true” by LLM,
while the more sophisticated systems require a KB rule to link
“visit” to “be (in)”:

S: [The diplomat]/ARG1 visited [Iraq]/ARG1 [in Septem-
ber]/AM TMP
T: [The diplomat]/ARG1 was in [Iraq]/ARG2

The SRL+LLM system will extract verb frames for “visit”
in S and “was” in T, and will fail the subsumption check at

the verb level. For LLM, the only words of T that register are
“diplomat” and “Iraq”, and as these are present in S, LLM
will return “true”.

Of course, LLM is insensitive to small changes in wording.
For the following sentence pair, LLM returns “true”, which is
clearly incorrect:

S: Legally, John could drive.
T: John drove.

B. SRL + LLM
The next version of the system first tries to match SRL an-

notation for S and T, and if this matches, it uses LLM to de-
termine argument subsumption.

The advantage of SRL+LLM over LLM is evident when,
for example, arguments are interchanged between two verbs.
This case is not represented in the PARC dataset, but the fol-
lowing sentence pair gives such an example:

S: [The president]/ARG0 said [[the diplomat]/ARG0 left
[Iraq]/ARG1]/ARG1
T: [The diplomat]/ARG0 said [[the president]/ARG0 left
[Iraq]/ARG1]/ARG1

In this case, the non-stopwords in S and T are identical,
so LLM will label this pair “true”. However, SRL will at-
tach different ARG0s to “said” and “left”, and will therefore
correctly label this sentence pair “false”.

The disadvantage of using SRL is that it generates predi-
cate frames for some verbs that are ignored as stopwords by
LLM, such as “went” in the following example:

S: [The president]/ARG0 visited [Iraq]/ARG1 [in Septem-
ber]/AM TMP
T: [The president]/ARG0 went to [Iraq]/ARG1.

Where LLM ignores “went”, SRL generates a predicate
node, causing subsumption to fail at the predicate level and
generating an incorrect “false” label.

In this data set, there are more instances like the second
case above than like the first; the result is a drop in perfor-
mance. However, the rest of this section will show that the
SRL forms a crucial backbone that supports a more success-
ful approach.

The Verb Processing module
The Verb Processing (VP) module rewrites certain verb

phrases as a single verb with additional attributes. It uses
word order and Part of Speech information to identify candi-
date patterns and, when the verbs in the construction in the
sentence match a pattern in the VP module, the verb phrase
is replaced by a single predicate node with additional at-
tributes representing modality (“CONFIDENCE”) and tense
(“TENSE”).

The VP module presently recognizes modal constructions,
tense constructions, and simple verb compounds of the form
“VERB to VERB” (such as “manage to enter”). In each case,
the first verb is compared to a list that maps verb lemmas
to tenses and qualifiers; for example, “has” is recognized as
a tense auxiliary and results in the attribute “TENSE: past”
being added to the second verb’s node; the “has” node is then
eliminated and the graph structure corrected.

KRAQ'05 - IJCAI workshop - July 30th 2005 76

In the example below, the VP recognizes the modal con-
struction and adds the qualifying attribute “CONFIDENCE:
potential” to the main verb node, “drive”:

S: Legally, John could drive.
T: John drove.

Subsumption in the SRL+LLM system then fails at the
verb level, returning the correct value “false” for this sentence
pair.

This module also acts as an enabler for other resources
(such as the Knowledge Base). This may result in a decrease
in performance when those modules are not present, as it cor-
rects T sentences that may have failed subsumption in the
SRL+LLM system because the auxiliary verb was not present
in the corresponding S sentence:

S: Bush said that Khan sold centrifuges to North Korea.
T: Centrifuges were sold to North Korea.

The SRL+LLM system returns the correct answer, “false”,
for this sentence pair, but for the wrong reason: SRL gener-
ates a separate predicate frame for “were” and for “sold” in
T, and there is no matching verb for “were” in S.

When the VP module is added, the auxiliary construction
in T is rewritten as a single verb with tense and modality at-
tributes attached; the absence of the auxiliary verb means that
SRL generates only a single predicate frame for “sold”. This
matches its counterpart in S, and subsumption succeeds, as
the qualifying effect of the verb “said” in S cannot be rec-
ognized without the deeper parse structure and the Discourse
Analysis module.

On the PARC corpus, the net result of applying the VP
module when the KB is not enabled is either no improve-
ment or a decrease in performance, due to the specific mix of
sentences. However, the importance of such a module to cor-
rectly identify positive examples becomes evident when the
knowledge base is enabled, as the performance jumps signif-
icantly.

C. SRL + Deep Structure
The next version of the system uses full and shallow parse,

Named Entity and Part of Speech information to identify sub-
structure in SRL predicate arguments. Specifically, the sys-
tem identifies the key entity in each argument and modifiers
such as adjectives, titles, and quantities. By default, we as-
sume that T must be less specific than S (this is not always
correct, but requires a new module to determine when a more
general argument entails a more specific one, and when not).

The new system correctly labels the following example,
which is incorrectly labeled by the LLM and SRL+LLM sys-
tems:

S: No US congressman visited Iraq until the war.
T: Some US congressmen visited Iraq before the war.

The new system includes the determiners “no” and “some”
as modifiers of their respective entities; subsumption fails at
the argument level because these modifiers don’t match.

However, the new system also makes new mistakes:

S: The room was full of women.
T: The room was full of intelligent women.

The LLM and SRL+LLM systems find no match for “intel-
ligent” in S, and so return the correct answer, “false”. How-
ever, the SRL+deep structure system allows unbalanced T ad-
jective modifiers, assuming that S must be more general than
T, and returns “true”.

Verb Phrase Module
Adding the Verb Phrase module results in performance

changes similar to those when it is enabled with the
SRL+LLM system, for the same reasons.

Discourse Analysis Module
The Discourse Analysis (DA) module detects the effects

of an embedding predicate on the embedded predicate. It
uses the full parse tree to identify likely candidate structures,
then compares the embedding verb to a list mapping verbs
to modality (CONFIDENCE). The main distinction that is
presently supported is between “FACTUAL” and a set of val-
ues that distinguish various types of uncertainty. This allows
different assumptions to be supported; for example, if we
wish to assume that when something is said, it is taken as
truth, we can treat the CONFIDENCE value “REPORTED”
as entailing “FACTUAL” and vice versa. The module at-
taches the appropriate CONFIDENCE attribute value to the
embedded verb node; if this attribute is not matched during
subsumption, subsumption fails.

The following example highlights the importance of the
way an embedded predicate is affected by the embedding
predicate. In this example, the predicate “Hanssen sold se-
crets to the Russians” is embedded in the predicate “The New
York Times reported...”.

S: “The New York Times reported that Hanssen sold FBI se-
crets to the Russians and could face the death penalty.”

T: “Hanssen sold FBI secrets to the Russians.”
Our system identifies the following verb frames in S and T:

S-A: “[The New York Times]/A0 reported [that Hanssen sold
FBI secrets to the Russians...]/A1”

S-B: “[Hanssen]/A0 sold [FBI secrets]/A1 to [the Rus-
sians]/A3”

T-A: “ [Hanssen]/A0 sold [FBI secrets]/A1 to [the Rus-
sians]/A3”

During preprocessing, our system detects the pattern
“[VERB] that [VERB]”, and classifies the first verb as af-
fecting the confidence of its embedded verb. The system
marks the verb (predicate) “sold” in S with attribute and
value “CONFIDENCE: REPORTED”. Thus the subsump-
tion check determines that entailment fails at the verb level,
because by default, verbs are given the attribute and value
“CONFIDENCE: FACTUAL”, and the CONFIDENCE val-
ues of the “sold” nodes in S and T do not match. This is
in contrast to LLM and SRL+LLM, both of which return the
answer “true”.

The next example demonstrates that the implementation of
this embedding detection is robust enough to handle a sub-
tly different sentence pair: in this case, the sentence structure
“Hanssen, who sold...” indicates that the reader should un-
derstand that it is already proven (elsewhere) that Hanssen
has sold secrets.

KRAQ'05 - IJCAI workshop - July 30th 2005 77

S: “The New York Times reported that Hanssen, who sold FBI
secrets to the Russians, could face the death penalty.”

T: “Hanssen sold FBI secrets to the Russians.”
Our system identifies the following verb frames in S and

T (using the full parse data provided by Collins’ parser to
connect “who” to “Hanssen”):

S-A: “[The New York Times]/A0 reported [that Hanssen, who
sold FBI secrets to the Russians...]/A1”

S-B: “[Hanssen]/A0 sold [FBI secrets]/A1 to [the Rus-
sians]/A3”

T-A: “ [Hanssen]/A0 sold [FBI secrets]/A1 to [the Rus-
sians]/A3”

During preprocessing, the system does not detect an em-
bedding of “sold” in “reported”, and so does not attach the at-
tribute and value “CONFIDENCE: REPORTED” to the verb
“sold” in S. During the subsumption check, the “sold” verbs
now match, as both are considered factual.

Qualifier Module
The Qualifier module allows comparison of qualifiers such

as “all”, “some”, “any”, “no”, etc. In the experimental results
summarized below, adding the Qualifier module does not im-
prove performance, because in all the PARC examples involv-
ing qualifiers, a different qualifier in S and T corresponds to
a negative label.

However, the qualifier module will correctly analyze the
following sentence pair, which is a reordered pair from the
PARC corpus:

S: All soldiers were killed in the ambush.
T: Many soldiers were killed in the ambush.

The default rule – non-identical argument modifiers cause
subsumption to fail – is incorrect here, as S entails T.
The Qualifier module correctly identifies the entailment of
“many” by “all”, and subsumption will succeed.

5.1 Experimental Results
We present the evaluation results across two dimensions. On
the horizontal axis we represent the baseline, system ver-
sion#1 (SRL+LLM), and system version#2 (SRL + Deep
structure). On the vertical axis we represent various knowl-
edge modules used to enrich the basic representation. The re-
sults are summarized below in two tables. Table 1 represents
the evaluation of the system with and without the KB infer-
ence rules and when SRL is perfect (i.e., considering only
examples on which our SRL tool gives correct annotation).
Table 2 shows the performance when the SRL system is used
with the entire dataset, including those examples on which
the SRL tool makes mistakes.

The results obtained with perfect semantic argument struc-
ture (perfect SRL) are provided here to illustrate the advan-
tages of the hierarchical approach, as noise introduced by
SRL errors can obscure the effects of the different levels of
the hierarchical representation/subsumption.

The improvement across the vertical dimension, which rep-
resents additional analysis resources that use the structural
information supported by the given system configuration, is

monotonic, indicating the benefits of semantic analysis of the
structural information.

The improvement across the horizontal dimension, which
represents successively finer structural representation, is
clearly best for the system with full parse information. To
summarize, the system behaves consistently, showing im-
provement as additional hierarchical structure and additional
semantic analysis resources are added. These results show
that the hierarchical approach is valid.

Work In Progress
Presently, the system works well when the SRL annotation

it depends on is mostly or completely correct. We are work-
ing on the following items to further improve the system’s
performance:

• Back-off Strategies to Handle Missing SRL Informa-
tion. We are working on a secondary step in each of the
first two levels of the subsumption algorithm, in which
we will use the Full Parse/dependency information to
seek candidates to substitute for “missing” arguments
and even verbs.

• Verb Phrase Matching. While the present SRL annota-
tion allows us to handle simple verb phrases by decom-
position, this is potentially error-prone.
We are developing a module to address the problem of
verb phrases (as highlighted in example 2 above) by
preprocessing sentences to collapse simple verb phrases
into a single node. This requires identifying the main
verb to associate with the replacement node, and adding
attributes to represent any qualification associated with
the supporting verb (in this case, “manage” does not re-
quire new attributes at our current level of operation,
but phrases like “failed to enter” and “tried to enter”
would require negation and intention attributes respec-
tively, both of which should result in subsumption failing
unless similar qualifications are present in the matching
verb/verb phrase).

• More sophisticated quantity matching. Clearly there
is a need to use numbers as a critical matching element in
the phrase-level subsumption phase. However, matching
numbers is not necessarily straightforward, as they can
be qualified in a number of ways – “at least $1 million”,
“over $1 million”, “more than $1 million”, “one mil-
lion dollars”, etc. We can identify number boundaries
in many cases with our Named Entity Tagger, and use
this to identify number qualifiers of key entities. How-
ever, determining whether numbers match requires fur-
ther processing to relate qualifiers, different notations,
etc.

6 Previous Work
Knowledge representation and reasoning techniques have
been studied in NLP for a long time[Schubert, 1986; Moore,
1986; Hobbset al., 1988]. Most approaches relied on First
Order Logic representations with a general prover and with-
out using acquired rich knowledge sources.

KRAQ'05 - IJCAI workshop - July 30th 2005 78

without KB with KB
LLM SRL+LLM SRL + Deep structure LLM SRL+LLM SRL + Deep structure

Base 59.38 56.25 62.50 62.50 60.94 68.75
VP N/A 57.81 62.50 N/A 67.19 75.00
DA N/A N/A 71.88 N/A N/A 82.81

Qual N/A N/A 71.88 N/A N/A 82.81

Table 1: System’s performance obtained for the PARC question-answer pairs without with perfect SRL. This corresponds to
64 question-answering pairs. The empty buckets (N/A) indicate that the module in the left hand column could not be used with
that column’s system configuration.

without KB with KB
LLM SRL+LLM SRL + Deep structure LLM SRL+LLM SRL + Deep structure

Base 61.84 55.26 61.84 64.47 59.21 67.11
VP N/A 55.26 60.52 N/A 63.16 69.74
DA N/A N/A 68.42 N/A N/A 77.63

Qual N/A N/A 68.42 N/A N/A 77.63

Table 2: System’s performance obtained for the PARC question-answer pairs on the full data set. The empty buckets (N/A)
show that no knowledge information could be used.

Significant development in NLP, specifically the ability to
acquire knowledge and induce some level of abstract repre-
sentation could, in principle, support more sophisticated and
robust approaches. Nevertheless, most modern approaches
developed so far are based on shallow representations of the
text that capture lexico-syntactic relations based on depen-
dency structures and are mostly built from grammatical func-
tions in an extension to keyword-base matching[Durmeet al.,
2003]. Some systems make use of some semantic informa-
tion, such as WordNet lexical chains[Moldovanet al., 2003],
to slightly enrich the representation. Other have tried to learn
various logic representations[Thompsonet al., 1997]. How-
ever, none of these approaches makes global use of a large
number of resources as we do, or attempts to develop a flex-
ible, hierarchical representation and an inference algorithm
for it, as we present here.

7 Conclusions
This paper presents a principled, integrated approach tose-
mantic entailment. We developed an expressive knowledge
representation that provides a hierarchical encoding of struc-
tural, relational and semantic properties of the text and pop-
ulated it using a variety of machine learning based tools. An
inferential mechanism over a knowledge representation that
supports both abstractions and several levels of representa-
tions allows us to begin to address important issues in ab-
stracting over the variability in natural language. Our prelim-
inary evaluation is very encouraging, yet leaves a lot to hope
for. Improving our resources and developing ways to aug-
ment the KB are some of the important steps we need to take.
Beyond that, we intend to tune the inference algorithm by in-
corporating a better mechanism for choosing the appropriate
level at which to require subsumption. Given the fact that we
optimize a linear function, it is straightforward to learn the
cost function. Moreover, this can be done in such a way that
the decision list structure is maintained.

8 Acknowledgments
We grateful to Ron Kaplan and Xerox PARC for sharing the collec-
tion of question-answer pairs with us. This research is supported

by the Advanced Research and Development Activity (ARDA)’s
Advanced Question Answering for Intelligence (AQUAINT) Pro-
gram, a DOI grant under the Reflex program, NSF grants ITR-IIS-
0085836, ITR-IIS-0085980, and an ONR MURI Award.

References
[Baaderet al., 2003] F. Baader, D. Calvanese, D. McGuin-

ness, D. Nardi, and P. Patel-Schneider.Description Logic
Handbook. Cambridge, 2003.

[Brazet al.,] R. Braz, R. Girju, V. Punyakanok, D. Roth, and
M. Sammons. An inference model for semantic entailment
in natural language. InProceedings of the National Con-
ference on Artificial Intelligence.

[Collins, 1999] M. Collins. Head-driven Statistical Models
for Natural Language Parsing.PhD thesis, Computer Sci-
ence Department, University of Pennsylvenia, Philadel-
phia, 1999.

[Cumby and Roth, 2002] C. M. Cumby and D. Roth. Learn-
ing with feature description logics. In S. Matwin and
C. Sammut, editors,The 12th International Conference
on Inductive Logic Programming (ILP-02), pages 32–47.
Springer, 2002. LNAI 2583.

[Dagan and Glickman, 2004] I. Dagan and O. Glickman.
Probabilistic textual entailment: Generic applied model-
ing of language variability. InLearning Methods for Text
Understanding and Mining, Grenoble, France, 2004.

[Durmeet al., 2003] B. Van Durme, Y. Huang, A. Kupsc,
and E. Nyberg. Towards light semantic processing for
question answering. HLT Workshop on Text Meaning,
2003.

[Even-Zohar and Roth, 2001] Y. Even-Zohar and D. Roth. A
sequential model for multi class classification. pages 10–
19, 2001.

[Fellbaum, 1998] C. Fellbaum.WordNet: An Electronic Lex-
ical Database. MIT Press, 1998.

[Hobbset al., 1988] J. R. Hobbs, M. Stickel, P. Martin, and
D. Edwards. Interpretation as abduction. InProc. of the
26th ACL, pages 95–103, 1988.

KRAQ'05 - IJCAI workshop - July 30th 2005 79

[Kingsburyet al., 2002] P. Kingsbury, M. Palmer, and
M. Marcus. Adding semantic annotation to the Penn tree-
bank. InProceedings of the Human Language Technology
conference (HLT)., San Diego, CA, 2002.

[Li et al., 2004] X. Li, P. Morie, and D. Roth. Identification
and tracing of ambiguous names: Discriminative and gen-
erative approaches. InProceedings of the National Con-
ference on Artificial Intelligence, 2004.

[Lin and Pantel, 2001] D. Lin and P. Pantel. DIRT: discovery
of inference rules from text. InKDD ’01, pages 323–328,
2001.

[Lloyd, 1987] J. W. Lloyd. Foundations of Logic Progam-
ming. Springer, 1987.

[Moldovanet al., 2003] D. Moldovan, C. Clark,
S. Harabagiu, and S. Maiorano. Cogex: A logic
prover for question answering. InHLT-NAACL, 2003.

[Moore, 1986] R. C. Moore. Problems in logical form. In
B. J. Grosz, K. Sparck Jones, and B. L. Webber, editors,
Natural Language Processing. Kaufmann, Los Altos, CA,
1986.

[Punyakanoket al., 2004] V. Punyakanok, D. Roth, W. Yih,
and D. Zimak. Semantic role labeling via integer lin-
ear programming inference. InProc. of the 20th Inter-
national Conference on Computational Linguistics (COL-
ING), Geneva, Switzerland, August 2004.

[Punyakanoket al., 2005] V. Punyakanok, D. Roth, and
W. Yih. The necessity of syntactic parsing for semantic
role labeling. InProc. of the 19th International Joint Con-
ference on Artificial Intelligence (IJCAI), 2005.

[Schubert, 1986] L. K. Schubert. From english to logic:
Contex-free computation of ’conventional’ logical trans-
lations. In B. J. Grosz, K. Sparck Jones, and B. L. Webber,
editors,Natural Language Processing. Kaufmann, Los Al-
tos, CA, 1986.

[Thompsonet al., 1997] C. Thompson, R. Mooney, and
L. Tang. Learning to parse NL database queries into logi-
cal form. InWorkshop on Automata Induction, Grammat-
ical Inference and Language Acquisition, 1997.

[Xpress-MP,] Xpress-MP. Dash Optimization. Xpress-MP.
http://www.dashoptimization.com/products.html.

KRAQ'05 - IJCAI workshop - July 30th 2005 80

Using Information Fusion for Open Domain Question Answering
Tiphaine Dalmas and Bonnie Webber

Institute for Communicating and Collaborative Systems (ICCS)
School of Informatics, University of Edinburgh

2 Buccleuch Place, Edinburgh EH8 9LW, Scotland, UK
t.dalmas@sms.ed.ac.uk bonnie@inf.ed.ac.uk

Content Areas:
web question answering, information fusion, shallow inference

Abstract
In open domain Question Answering, answer can-
didates are ranked according to individual features
such as matching the answer type expected by the
question. We report on a technique based on the
fusion of candidate answers and their context into
answer neighbourhoods to provide better features
for ranking and allow shallow reasoning.

1 Introduction
Research efforts in automated Question Answering (QA)
have focused on understanding questions to retrieve correct
answers. This includes deep parsing, lookups in ontologies,
question typing and machine learning of answer patterns ap-
propriate to question forms. In such context, answer candi-
dates are seen as competitors and ranked according to indi-
vidual features such as match with the expected answer type
and number of question words in context. This ignores poten-
tially relevant relations between answer candidates. In recent
work [Clarke et al., 2001; Brill et al., 2002], frequency count
of answer candidates, i.e. equivalence by string matching, has
proved to be useful to identify correct answers. We propose
to investigate further relations and focus on the analysis of
answer candidates and their context, in the belief that their
relationships can be exploited as well as individual features.

Illustrating this intuition is the infamous Where is the Taj
Mahal? example [Burger et al., 2002]. There are several
Taj Mahal in the world, the most famous one being in Agra,
India. Recognising that the two distinct strings, Agra and
India, apply to the same world referent and building an an-
swer cluster {Agra, India} increases the likelihood of either
candidate being an answer through the cumulative frequency
counts of both occurrences. Considering Agra and India as
competitors reduces that likelihood. The same goes for other
correct answer candidates such as Atlantic City, New Jersey.
The first intuition is thus to try to automatically discover such
relations between answer candidates. After a first experiment
using WordNet to relate candidates, we noticed that answer
candidates that would be judged to be incorrect answers were
actually of interest. In a second experiment, we performed fu-
sion not only on answer candidates but also on phrases from

the context, e.g. architecture, Trump, casino. We introduced
a new linking based on word co-occurrences and built more
topic-oriented clusters. The Taj Mahal question can then be
provided with distinct clusters such as {architecture, Agra,
India}, {casino, Trump, Atlantic City, NJ}.

In this paper, we first motivate research on multiple an-
swers, showing that they are not a rare case and thus one
could benefit of such multiplicity. We review work in infor-
mation fusion and its applications in QA. We then describe
two experiments based on answer comparison and informa-
tion fusion to identify answer neighbourhoods. We show that
such modeling, even based on shallow techniques, improves
the overall accuracy and robustness of a baseline QA system
by 20%.

2 Background

2.1 Multiple Answers
The background to this work is the quantity of questions with
multiple answers. To quantify this, we investigated cases
where different extractions were considered acceptable an-
swers to questions in TREC QA [Voorhees, 2002] and in
a corpus of reading comprehension tests produced by the
MITRE corporation based on texts from CBC4Kids [Light
et al., 2001].

For TREC QA, we calculated the percentage of multiple
answers using the patterns provided by NIST judges to eval-
uate systems. These patterns are regular expressions, one
for each similar answer (in terms of pattern-matching). We
counted each separate line of patterns as a separate answer.

The figures are given below1. These figures are actu-
ally an under-count because a single line can stand for sev-
eral answers, e.g. the single regular expression (18|19|20)
million corresponds to three different answers. But even
with this under-count, the proportion of multiple extractions
is significant.

1The proportion of multiple answers in TREC 11 is significantly
less because systems were required to give only one answer per
question. Still, several questions had more than one distinct answer
pattern.

KRAQ'05 - IJCAI workshop - July 30th 2005 81

TREC 8 9 10 11 CBC
questions 200 693 500 500 481
No answer 2 11 67 56 0
Single answ. 129 304 211 378 173
Multi. answ. 69 378 222 66 308
% of multiple 34.5 54.5 44.4 13.2 64

There are several reasons for multiple answers, including am-
biguity or complexity in the question, variability or how the
same information is presented, and possible contradictory in-
formation. (See [Buchholz and Daelemans, 2001] for a case
study of complex answers.) Nonetheless, the number of an-
swers there are to a question is not proportional to the size of
the corpus (around 3GB for TREC questions, 500 words for
CBC questions) but rather to how informative the corpus is
with respect to a question.

Our original intuition concerned types of questions which
could be answered in more than one way. Classification
of questions in the TREC 8 through TREC 10 test sets by
their WH-word leads to the following six classes (represent-
ing around half of the initial corpus) along with the frequency
with which they have more than one answer.

class # questions Multiple answ.
who/famous-for 215 40.5%
when 93 44.1%
how-adj/adv 107 46.7%
where 118 64.5%
why/cause-effect 16 75%
definition 120 80.8%

While definition and cause/effect questions very often have
more than one acceptable answers, the proportion is high for
all six question types. This goes beyond the usual distinc-
tion in TREC QA between factoid questions (expecting only
one answer) and definition/list question (for which multiple
answers are allowed).

As the designer of a QA system, there are two things one
can do with multiple answers: simply choose among them,
or try to use them – for example in a complex answer. If an-
swers are extractions (strings), the only way of using them is
to count how often each occurs and choose the one with the
highest frequency. (This is essentially what is done in [Brill
et al., 2002]). If we move beyond strings though, we can ex-
ploit multiple answers in additional ways that allow greater
movement towards fluent and user-oriented answers. We be-
lieve fusion, as a mean of merging information and structur-
ing data, will allow that step.

2.2 Information Fusion
Information fusion is a term that refers to the merging of in-
formation that originates from different sources. Fusion is
not always required, even for complex answers. For exam-
ple, among answer candidates for the question What were
Christopher Columbus’ three ships? are the extractions the
Nina, the Pinta, and the Santa Maria; The Santa Maria,
The Nina, and The Pinta; Pinta ship. The answer patterns
that TREC QA has for assessing answers to this question are:
Nina.*Pinta.*Santa Maria, Santa Maria.*Nina.*Pinta, and
all the required variants to match the correct coordination.
However, complex answers have not always been anticipated

in a single text. Parts of the answer may occur independently,
in which case the answer has to be reconstructed by analyzing
the relationships occurring between nuggets of information
found in different places.

In multi-document summarization, which has similar prob-
lems of data redundancy and heterogeneity in data as QA over
large corpora, [Mani and Bloedorn, 1999] have proposed a
graph-based technique to identify similarities and differences
among documents in order to construct a summary, while
[Barzilay et al., 1999] report a technique based on informa-
tion fusion to generate new sentences summarizing informa-
tion dispersed in several documents.

In QA, [Girju, 2001] demonstrated the benefit of answer
fusion to retrieve list of correct answers. Her approach is top-
down, directed by question type (cause, effect and definition)
for which relational patterns, such as X caused by Y, were pre-
computed to unfold a dynamic ontology from the extractions
found in the search corpus.

In this paper, we demonstrate the value of a bottom-up ap-
proach to fusion without pre-computing relational patterns
and applicable to any question type. The next sections de-
scribe QAAM, our software for QA Answer Modeling, and
report results for two evaluations: (1) one experiment on loca-
tion questions and (2) another one based on TREC QA open
domain questions using the web as search corpus.

3 QA Answer Modeling
Our answer models are directed graphs in which nodes corre-
spond to entities projected from the question and candidate
extractions and edges convey relationships between them.
The graph represents the fusion of information contained in
the set of extractions. To generate such a model, two steps
are required: (1) normalizing the extractions to be projected
as nodes into the model and (2) discovering relationships be-
tween them. Once a model is built, answer candidates can
be ranked using both individual features and graph features
(i.e. fusion-based features). The system we implemented to
automatically generate models is called QAAM.

3.1 Projection
We use extractions as a broad term to refer to answer candi-
dates. Extractions can actually be of several kinds: a passage,
a sentence, a phrase or simply a keyword. In our first experi-
ment, we used answers provided by other TREC QA systems.
Such answers were usually nominal phrases and we projected
these directly, otherwise the extraction was split into nomi-
nal phrases. In our second experiment, QAAM’s input was a
list of web snippets split into sentences, and nominal phrases
were projected into nodes.

To standardize such phrases, we represent each as a list of
attribute-value pairs (features). On the work reported here,
we use three features: (1) the list of tokens in the phrase, (2)
the list of lemmas (first experiment) or stems (second experi-
ment) and (3) the extraction and position at which the phrase
has been found. Normalized extractions form the nodes of
the graph. We apply the same process to the question as to
answer candidates in order to discover relations not only be-
tween potential answers but also between the question and the
extractions. We distinguish three types of nodes:

KRAQ'05 - IJCAI workshop - July 30th 2005 82

• question nodes projected from the question

• answer nodes that directly match an answer type ex-
pected by the question type. (A distance question ex-
pects a number followed by a distance unit.) We cur-
rently have 20 question types and 84 patterns. We call
these directly matching nodes nuclear nodes, i.e. nodes
that contain a core information.2

• remaining nodes are called satellites.

For answers that are only weakly typed, nodes that are not
question nodes are all considered as nuclear. (For instance,
we do not have a specific pattern for question expecting a
definition.)

The next step consists in discovering what the relationships
between nodes are.

3.2 Relation Discovery
There are infinitely many relations that could hold (1) be-
tween a question and its answer candidates, and (2) among
answer candidates.

Relations between question and answers have been studied
in the context of question typing, and several strategies have
been proposed. Question ontologies are helpful to anticipate
the type of the answer, especially Named Entities (e.g. loca-
tion questions or questions asking for a person name). [Prager
et al., 2001] describe the use of WordNet hypernyms to an-
swer definition questions. [Girju, 2001] focused on cause-
effect relationships, as well as hypernym relations for defini-
tion questions.

There are fewer studies on relationships that could hold be-
tween answers. This research falls into two categories. Sev-
eral groups, including [Clark et al., 2001; Brill et al., 2001],
use answer redundancy and frequency, i.e. answer equiva-
lence, to help answer selection. Other groups, such as [Buch-
holz and Daelemans, 2001] and [Webber et al., 2002], have
proposed different formalizations of answer relations to han-
dle multiple and/or complex answers. Table 1 proposes a
comparison of the two.

Both approaches assume that the system has found correct
answers and the considered relations are between correct an-
swers only. Our approach considers all answer candidates
(correct and incorrect) as well as question words. For that
reason, we also prefer the term information fusion rather than
answer fusion (Girju), as our modeling involves fusing ex-
tractions that are not always correct answers. This is a real-
istic claim for two reasons: (1) QA is still far from providing
100% accurate answer extractions3 and (2) an answer can be
composed of elements that, considered independently, are not
answers (e.g. Pinta ship alone is not a correct answer to the
question What were Christopher Columbus’ three ships?) and
related candidates, although not fitting the answer type (e.g.

2These patterns should not be confused with the relational pat-
terns that Girju uses for top-down fusion. We use patterns make
a distinction between different kinds of nodes, not to identify their
relations.

3The best score on factoid questions at TREC QA 13 was 77%,
the median score being 17%, which shows that the average QA sys-
tem performance is still low.

Morse/1844 for When was the telegraph invented?), can also
help answering.

Table 1: Relationships between answers

[Webber et al., 2002] [Buchholz and Daele-
mans, 2001]

answers determined to be
equivalent (mutually en-
tailing)

different measures, differ-
ent designations, time de-
pendency

answers that differ in
specificity (one-way
entailing)

granularity

answers that are mutually
consistent but not entail-
ing can be replaced by
their conjunction (aggre-
gation)

collective answers

answers that are incon-
sistent, or alternative an-
swers

many answers, ambiguity
in the question, different
beliefs

Instead of defining templates in the lines of research in In-
formation Extraction (see for instance [Yangarber, 2000]), in
which, for a time question about an event, one searches for
placenames or actors related to a given date, we propose to
look at two relationships: equivalence and inclusion. (We use
↔ to denote an equivalence and → an inclusion.) In our sec-
ond experiment, we introduce contextual comparison (word
co-occurrences) to our modeling.

Relations are infered in a unsupervised way. Models are
automatically generated using the techniques described be-
low. Both experiments evaluate models on a task-based ba-
sis, so we do not have figures for the precision and quality
of the models. The reason for choosing a task-based evalua-
tion is because models generate many relationships. Given N
candidates, the size of required matrix to encode relations is
(N ∗ (N − 1))/2, e.g. for a question with 50 nodes (question
words plus answer candidates), 1225 relations would have to
be evaluated against a previously annotated gold standard,
and this for each question. Since we are yet experimenting
with the type of relations to be discovered, we stick to unsu-
pervised inference and use a task-based evaluation.

We now review the techniques we use for inference.
Equivalence is infered using either WordNet lookups (syn-
onyms) or shallow string comparison (lemma/stem compar-
ison, abbreviation recognition and Edit-Distance similarity).
Table 2 provides examples for each technique.

Table 2: Equivalence Inference.

Techniques Examples
Lemmatization/stemming illnesses ↔ illness
Abbreviation US ↔ United States
Edit-Distance Hindenburg ↔ Hindenberg
WordNet synonym treaty ↔ pact

KRAQ'05 - IJCAI workshop - July 30th 2005 83

To infer inclusion, we use four WordNet pointers: hyponym,
meronym, partonym and membership, and an approximation
of inclusion based on overlap computation and context analy-
sis (see Table 3). Contextual inclusion is computed by check-
ing the overlap between the context feature (see Section 3.1)
of two nodes. For instance if the context of bipolar disor-
der is a subset of the context of mental illness, the system
makes the assumption that bipolar disorder entails mental ill-
ness because each time bipolar disorder is mentioned some-
where, it co-occurs with mental illness (but not the reverse
because mental illness also occurs independently elsewhere).
This form of inclusion/entailment was inspired by work on
light-weight inference [Monz and de Rijke, 2001].

Table 3: Inclusion inference.

Techniques Examples
WordNet hyponym symptom → vertigo
WordNet meronym water → hydrogen
WordNet partonym Scotland → Edinburgh
WordNet membership European Union → France
Lexical head expert → sunspot expert
Bag subset sun → sun core
Context mental illness → bipolar disorder

3.3 Identifying Answer Neighborhoods
Once a model is built, the topology of the graph provides
clues for ranking nodes and identifying answer neighbor-
hoods, i.e. highly connected group of nodes. Figure 1 shows a
model generated in our first experiment on location questions
for the question Where is Glasgow?. Each node corresponds
to a candidate answer (London appeared twice, and Glasgow
appeared among candidates). This graph has two partitions:
A is the largest one and contains the correct answer nodes
Britain and Scotland, linked by inclusion, and both pointing
to Glasgow. Partition B (Munich) is an isolated node. Such
neighborhood properties give clues to which node could be a
correct answer and which parts of the graph refer to a same
answer or to potential alternatives. For example Glasgow,
Manchester and London are distinct siblings, while Britain,
Scotland and Glasgow are on the same branch.

B

A

equivalence
inclusion

node from answer candidates
question node

Munich

Britain

LondonScotland Manchester

Glasgow

Glasgow

London

Figure 1: Answer model for Where is Glasgow?

Figure 2 shows that, even if no relation had been inferred be-
tween a question node and the other nodes, fusion still helps
identifying which cluster of nodes is more likely to contain
a correct answer given the question Where is the Valley of
the Kings? The cluster {Egypt, Luxor} would be considered
more likely than the singleton Ohio.

inclusion
question node
node from answer candidates

free−lance Ohio

Valley of the Kings

Luxor

Egypt

Figure 2: Answer model for Where is the Valley of the Kings?

Notice that in this pilot experiment, we assumed all nodes to
be nuclear (apart from question nodes). Thus free-lance was
an answer candidate but, being isolated, it had a low ranking.

To rank candidate answers based on the model, QAAM
evaluates different properties of each node to assess the like-
lihood of a node’s being an answer. Such properties are indi-
vidual (node type) as well as graph-based computations, e.g.
number of children, partition size, relations with a question
node. (See next section for the selection algorithm.)

The selection can vary in specificity and amount of infor-
mation provided. For instance, a general answer to Where is
Glasgow? corresponds to the root node Britain. A detailed
answer would output the full path from Glasgow, i.e. Scot-
land, Britain. Models provide inference mechanisms for fur-
ther processing of the answers, for instance more elaborated
answers. However, there is not yet any evaluation material to
assess the correctness of such answer clusters. The evalua-
tions in this paper consist in displaying a rank-ordered list of
nodes and evaluating it against answer patterns. Such eval-
uation assesses the quantitative value of fusion in terms of
answer correctness but does not evaluate the quality of the
clustering process.

4 Pilot Experiment on Location Questions
The object of this first experiment was to check the feasibil-
ity of answer modeling on real data, given that QA systems
still produce many incorrect answers. [Greenwood, 2004]
notes that the average performance by participants in TREC
11 was approximately 22%. Only the best TREC 11 system
[Moldovan et al., 2002] correctly answered 415 question over
500, for a score of 85.6%. Given this average performance,
the experiment was meant to determine whether it is worth
generating answer models to derive better answers under such
conditions.

To check the impact of information fusion, we compared
the approach described in Section 3 against a technique that
compares each extraction with the question but ignores rela-
tions among the extractions.

We selected 85 questions from TREC 8 to TREC 11 that
request locations and for which there is an obvious inclusion
or entailment relationship between a word of the question and
the expected answer (Where is X? X is part of <answer> or

KRAQ'05 - IJCAI workshop - July 30th 2005 84

<answer> ’includes’ X). Candidate extractions were taken
from the list of judgements produced by TREC systems. For
each question, we assigned it 5 incorrect answer candidates
and 1 to 5 correct ones, depending on the number of correct
judgements available. 44.7% of the questions had one correct
answer, 17.6% had two, 12.9% had three, only 3.5% had four
and 21.3%, five.

The task was defined as a ranking problem. As described
in Section 3, QAAM takes as input a question and a list of
extractions, generates a graph and outputs an ordered list
of strings, each corresponding to a different node. We in-
ferred equivalence and inclusion using WordNet, abbrevia-
tion recognition and lexical head comparison. Contextual
comparison was not included, as TREC judgements corre-
spond to exact answers and thus a limited context.

Ranking was based on comparing the following node prop-
erties:

(a) Does the node derive from the question or is it equiva-
lent to a question node?

(b) How many question nodes is the node directly related
to?

(c) How many question nodes are present in its partition of
the graph?

(d) How large is its partition?
(e) How many children does it have by transitive inclusion?
(f) How many nodes is it equivalent to?

(a) excludes nodes that paraphrase a question node such as
Glasgow in Figure 14. (d) measures the size of the partition
of the node being considered. (f) measures redundancy, while
(b) and (c) check the relation of the node to the question. (e)
gives a measure of specificity. The fewer are its children by
inclusion, the more specific we take a node to be. For in-
stance, Britain has more children by inclusion than Scotland
and is thus considered less specific. Notice that (d), (e) and
(f) count both question and answer nodes.

The two following approaches were then compared:

• -fusion, which sorts nodes based only on features that
relate the question and a single answer – i.e. (a) and (b).

• +fusion, which makes use of all the features in the or-
der: (a), (b), (c), (d), (e) and (f), and reflects relations
between (i.e. fusion of) multiple nodes. The order de-
fines a preference: For instance, a specific node (e) that
occurs only once would be preferred to a less specific
node that is more redundant (f).

Notice that features (c), (d), (e) and (f) make use of rela-
tions between any kind of nodes and thus cannot be used by
-fusion. For instance, according to feature (c), London in
Figure 1 is related to one question node, Glasgow, by fol-
lowing paths between answer nodes. This cannot be used for
-fusion. If the path does not actually contain any answer
node, it is then equivalent to feature (b), which is a -fusion
feature. Finally, the node with the longest string was selected
for tie-breaking.

4Only for questions such as What do you call a newborn kanga-
roo? should the answer be a paraphrase of (part of) the question.

The final list of rank-ordered nodes was then evaluated
against the TREC answer patterns. Table 4 shows that
QAAM, when it made use of relationships between answer
nodes (+fusion), identified more correct answers than it did
by simply looking up relations between question nodes and
answer nodes (-fusion). The inclusion relationship was es-
pecially useful to detect clusters of related answers and was
the main relation inferred (2/3 of the relations). What was
surprising was the proportion of relations involving incorrect
answers (2/3 of the total number of relations). To check the
role of incorrect answer nodes, we assumed an oracle could
identify correct answer nodes so that only relations involving
correct answer nodes and/or question nodes are considered.

Table 4: FRS stands for first rank score, i.e. the percentage of
questions for which each system ranked a correct answer first.
MRR (Mean Reciprocal Rank) measures the overall rerank-
ing strategy.

standalone with an oracle
FRS MRR FRS MRR

-fusion 49% 0.63 65% 0.71
+fusion 72% 0.82 78% 0.85

While an oracle significantly improved the performance of
the -fusion system, the improvement was significantly less
when using fusion. The models contained two kinds of in-
correct answer: (1) out of topic and (2) wrong but related.
The latter kind helped building larger partitions more likely
to contain a correct answer. Overall, a strategy that carries
out information fusion among answers candidates (even in-
correct ones) is not only better but more robust and resistant
to incorrect answers than a strategy that considers only rela-
tions between questions and answers alone.

5 Web Answer Model Generation
Our second experiment addresses two limitations of the
first experiment, considering additional question types and a
greater diversity of answers.

In order to get a greater diversity of answers, we used the
web as a search corpus rather than ACQUAINT (TREC QA
corpus). This highlighted the fact that a more data-mining
oriented interpretation of the QA task would view it as de-
termining what the answers are for that question with respect
to a specific corpus. For instance, given the question What
is vertigo?, TREC 10 systems found the following answers
in the AQUAINT corpus: dizziness, disorientation, sensation
motion, tinnitus, skewed balance. The same question posed to
the Web using Google finds, in addition, that it is a company,
a Photoshop plug-in, a paragliding and hang-gliding compe-
tition, a comics series and an Alfred Hitchcock movie. (The
AQUAINT corpus contains mentions of the film but it was not
among the accepted answers because a TREC QA require-
ment is to provide the most expected answer). TREC QA
systems make extensive use of external knowledge sources,
such as WordNet, in which the only interpretation for vertigo
is the medical symptom. Answers are thus biased towards the

KRAQ'05 - IJCAI workshop - July 30th 2005 85

resource used, instead of being representative of the search
corpus (hence our bottom up approach).

In this second experiment, we used Wee, our own shallow
Google-based QA system, to provide us with web sentences
from which we could build models and extract candidate an-
swers. For each question, Wee posed a query to Google con-
sisting of keywords from the question and took back the top
100 snippets that Google returned. Snippets were split into
sentences (about 350 sentences per question), tokenized, and
given as input to QAAM. Node features were reduced to a
normalisation of answer strings by stemming. To infer the
equivalence relationship, we used simple string matching and
the Edit-Distance algorithm to deal with misspellings, which
are frequent in web data. WordNet lookups used for relation
inference were replaced by overlap computation and a shal-
low context comparison.

We developed this version of QAAM on TREC 10 and
evaluated it on TREC 11. For development, we used an ex-
tended set of answer patterns that included correct web an-
swers that were not present in the TREC set. Results for
TREC 11 were evaluated with TREC answer patterns only.
We compared three strategies against a sentence level base-
line (Wee output). The models were based on the fusion of
the top 100 sentences (taken from the approximately 350 sen-
tences associated with the 100 Google snippets) of the base-
line. Each strategy generated a cluster of nodes as answer.
The lists differed in how answers were partitioned into an-
swer neighbourhoods. Examples for each strategy are given
below (What is vertigo?):

- twins partitions the answer model into clusters of equiv-
alent nodes: {dizziness, DIZZINESS}, {Hitchcock},
{Alfred Hitchcock}, {software}, {3D plug-ins for
Adobe}, {sensation of spinning}.

- family identifies family clusters, i.e. nodes consid-
ered equivalent or related by an inclusion relationship
based on overlap, e.g. Hitchcock → Alfred Hitchcock):
{dizziness, Dizziness}, {Hitchcock, Alfred Hitchcock},
{software}, {3D plug-ins for Adobe}, {sensation of
spinning}.

- extended family generates clusters of nodes of the same
family or related by their context: {sensation of spin-
ning, dizziness, Dizziness}, {Hitchcock, Alfred Hitch-
cock}, {software, 3D plug-ins for Adobe}.

During this experiment, we noticed question nodes aggre-
gated many answers nodes because they are ambiguous. They
generated large clusters that were not comparable with sen-
tence level answers. For instance, vertigo would cluster nodes
referring to individual symptoms of the disease as well as to
features of the film and software. To disambiguate such clus-
ters and reduce the size of partitions, we considered question
nodes as barriers to partitioning.

Clusters were then ranked by size (sum of the frequency of
each member) and evaluated against answer patterns to assess
their correctness. Sentences provided by the baseline (Wee
output) were assessed in the same way and we compared the
recall for each strategy. To What is vertigo?, the first sentence
provided by the baseline was:

National Institute on Deafness and Other Communica-
tion Disorders The primary NIH organization for research on
Dizziness and Vertigo is the National Institute.

Notice the length of an answer cluster is similar in length
to a sentence-based answer, however the keyword density is
higher. (Results are not comparable with TREC results: A
TREC answer is a key phrase whereas our answers are ei-
ther a sentence (baseline) or a list of key phrases (fusion ap-
proaches).)

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���

�
�
�
�
�
�
�

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�
�
�
�
�
�
�

	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�

�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��

1

10
20
30
40
50
60
70
80
90

2 5 2010 50 all Rank

Recall
100

baseline
twins

family
ext. family

TREC 10

Figure 3: TREC 10 results

���
���
���
���

�
�
�
�

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���
���
���
���

�
�
�
�
�
�
�

1

10
20
30
40
50
60
70
80
90

2 5 2010 50 all Rank

Recall
100

TREC 11

Figure 4: TREC 11 results

Figures 3 and 4 show average recall at rank for TREC 10
and TREC 11 questions.

The baseline results are low on first-ranked answers. As is
often the case, the more answers accepted, the better the recall
(up 92% for TREC 10 and 83% for TREC 11) but the lower
the precision. On TREC 10, the best recall is achieved when
providing on average 200 candidate extractions. This means
that more than 80% of TREC questions are answerable using
the web. However, at rank 1, which is the level of accuracy
required for QA, sentence-based reranking provides only a
third of the questions with a correct answer.

Both data sets show that the main improvement was ob-
tained by using fusion and especially the inclusion rela-
tionship (family and extended family), with the best results
achieved using extended family. In both TREC 10 and 11,
baseline recall was improved by 20% for first ranked an-
swers. On average, QAAM proposed 12 distinct partitions
as answers per question, which resulted from the fusion of

KRAQ'05 - IJCAI workshop - July 30th 2005 86

the top 100 snippets. The baseline uses the full set of snip-
pets (on average 350 per questions), which explains why the
baseline performs better on the long run. With fusion, recall
at rank thresholds around rank 10 on both figures and indi-
cates how much more precise the fusion strategy is compared
to the baseline.

Relation discovery, and consequently fusion, performed at
different levels depending on the question type. Questions
asking for a definition (What is e-coli?, What does CPR stand
for?) or a biographic information (Who was Galileo?) and
factoid questions asking for a term, a location or a date were
best answered using fusion. Numeric answers (e.g. duration,
weight, distance) were more difficult to compare because unit
variations and number approximations led to smaller parti-
tions with similar answer likelihood. Answers describing an
action (What is an eclipse? moon blocks sunlight) could not
be fused properly since only nominal phrases were projected.

However, this large-scale experiment (TREC 10 and 11
represent 1000 questions) shows that information fusion can
serve as a strong basis for reranking for any question type,
even when based on shallow techniques. Although clusters
are not exact answers, they are better nests for correct an-
swers than plain sentences, and their structure can serve as
the basis for shallow reasoning over answer relationships.

6 Conclusion and Future Work
In this paper, we demonstrated, through two experiments we
carried out, the value of information fusion and answer com-
parison in terms of answer correctness.

We have shown that incorrect but related answers can help
to build a supportive network around a correct answer and to
interpret and eventually classify results. Such nodes, which
we call satellites, appear to be of two kinds: (1) words denot-
ing or relating to a question type (e.g. the word “location”
for spatial questions) and (2) words relating to the world ref-
erent of a correct answer or an event involved in it (architec-
ture, mausoleum for the Indian Taj Mahal, or the birth date
for a question asking for a birth place). Questions for which
the expected answer has a very specific linguistic form (e.g.
questions asking for a year, i.e. a four-digit answer) are eas-
ier to answer from QAAM clusters because the distinction
between satellite and nuclear nodes can be done using pattern
matching. For questions with a less well defined answer type,
such as definition questions, the distinction is not as straight-
forward. For instance What is pastrami made of? is well
answered with beef. Food, although conceptually true, is in-
correct because too general. In future work, we would like
to investigate further QAAM graphs to identify ways of auto-
matically classify satellite versus nuclear nodes. In the pas-
trami example, the fact that food is too general of a concept
to be given as answer is evident from QAAM graph because
it includes many other nodes (meat, beef, turkey...) and in-
cludes pastrami itself. Besides the advantages of clustering,
introducing collective features, it seems worth investigating
what further inference mechanisms, based on relationships,
can be used from the models to improve answer selection and
eventually answer generation.

Another research area we would like to explore is the value

of clustering for further answer processing. In current evalu-
ations, Agra and India are considered as two distinct correct
answers. Using fusion, it is possible to identify them as re-
ferring to the same answer. As mentioned above, there is
not yet any evaluation material to assess the correctness of
such answer clusters. An automated way of evaluating with-
out involving heavy annotation work could be to compare the
results of the two strategies, with and without fusion, in a ren-
dering task such as picture retrieval or summarization. Since
QAAM clusters are structured and contain background infor-
mation, we believe that a rendering based on fusion would
better acknowledge answer multiplicity, considering an an-
swer as a structured entity as opposed to a string.

Acknowledgment Tiphaine Dalmas’s work is funded by the
School of Informatics at the University of Edinburgh.

References
[Barzilay et al., 1999] R. Barzilay, K. R. McKeown, and

M. Elhadad. Information Fusion in the Context of Multi-
Document Summarization. In 37th Annual Meeting of
the Association for Computational Linguistics, pages 550–
557, 1999.

[Brill et al., 2001] E. Brill, J. Lin, M. Banko, S. Dumais, and
A. Ng. Data Intensive Question Answering. In 10th Text
Retrieval Conference, pages 393–400, 2001.

[Brill et al., 2002] E. Brill, S. Dumais, and M. Banko. Anal-
ysis of the AskMSR Question-Answering System. In Em-
pirical Methods in Natural Language Processing Confer-
ence, 2002.

[Buchholz and Daelemans, 2001] S. Buchholz and
W. Daelemans. Complex answers: A case study us-
ing a WWW question answering system. Natural
Language Engineering 1 (1), 2001.

[Burger et al., 2002] J. Burger, C. Cardie, V. Chaudhri,
R. Gaizauskas, S. Harabagiu, D. Israel, C. Jacquemin,
C. Lin, S. Maiorano, G. Miller, D. Moldovan, B. Og-
den, J. Prager, E. Riloff, A. Singhal, R. Shrihari, T. Strza-
lkowski, E. Voorhees, and R. Weishedel. Issues, Tasks and
Program Structures to Roadmap Research in Question and
Answering. NIST, 2002.

[Clark et al., 2001] C. L. A. Clark, G. V. Cormack, and T. R.
Lynam. Exploiting Redundancy in Question Answering.
In 24th ACM-SIGIR International Conference on Research
and Development in Information Retrieval, pages 358–
365, 2001.

[Clarke et al., 2001] C. L. A. Clarke, G. V. Cormack, and
Th. R. Lynam. Exploiting Redundancy in Question An-
swering. In 24th annual international ACM SIGIR con-
ference on Research and development in information re-
trieval, pages 358–365, 2001.

[Girju, 2001] R. Girju. Answer Fusion with On-Line Ontol-
ogy Development. In North American Chapter of the Asso-
ciation for Computational Linguistics - Student Research
Workshop, 2001.

KRAQ'05 - IJCAI workshop - July 30th 2005 87

[Greenwood, 2004] Mark Greenwood. Answer Finder:
Question Answering from Your Desktop. In Computa-
tional Linguistics UK, pages 75–80, 2004.

[Light et al., 2001] M. Light, G. Mann, L. Hirschmann,
E. Riloff, and E. Breck. Analyses for Elucidating Cur-
rent Question Answering technology. Natural Language
Engineering, 7(4):325–342, 2001.

[Mani and Bloedorn, 1999] I. Mani and E. Bloedorn. Sum-
marizing Similarities and Differences Among Related
Documents. Information Retrieval, 1:35–67, 1999.

[Moldovan et al., 2002] D. Moldovan, S. Harabagiu,
R. Girju, P. Morarescu, F. Lacatasu, A. Novishi, A. Bad-
ulescu, and O. Bolohan. LCC Tools for Question
Answering. In 11th Text Retrieval Conference, 2002.

[Monz and de Rijke, 2001] C. Monz and M. de Rijke. Light-
Weight Inference for Computational Semantics. In Infer-
ence in Computational Semantics, pages 59–72, 2001.

[Prager et al., 2001] Prager, Chu-Caroll, and Czuba. Use of
WordNet Hypernyms for Answering What-Is Questions.
In 10th Text Retrieval Conference. NIST, 2001.

[Voorhees, 2002] E. M. Voorhees. Overview of the TREC
2002 Question Answering Track. In 11th Text Retrieval
Conference, page 1. NIST, 2002.

[Webber et al., 2002] B. Webber, C. Gardent, and J. Bos. Po-
sition statement: Inference in Question Answering. In
LREC Workshop on Question Answering: Strategy and Re-
sources, pages 19–26, 2002.

[Yangarber, 2000] R. Yangarber. Scenario Customization for
Information Extraction. PhD thesis, New York University,
2000.

KRAQ'05 - IJCAI workshop - July 30th 2005 88

Supervised Machine Learning Techniques for Question Answering

Ingrid Zukerman and Pawel Kowalczyk and Michael Niemann
School of Computer Science and Software Engineering

Monash University
Clayton, VICTORIA 3800, AUSTRALIA

{ingrid,pawel,niemann}@csse.monash.edu.au

Bhavani Raskutti
Telstra Research Laboratories

770 Blackburn Road
Clayton, VICTORIA 3168, AUSTRALIA

Bhavani.Raskutti@team.telstra.com

Abstract

In this paper, we discuss three components of our
question answering system, focusing on our applica-
tion of machine learning techniques. In particular, we
describe our use of Support Vector Machines (SVMs)
for the selection of sentences that contain answers to
queries. Our SVMs are trained on attributes that re-
flect two types of information: (1) semantic query fea-
tures, and (2) the relationship between these features
and candidate answer sentences. Our evaluation yields
encouraging results, pointing the way to further inves-
tigation of machine learning techniques.

1 Introduction
The growth in popularity of the Internet highlights the im-
portance of developing systems that generate responses to
queries targeted at large unstructured corpora. The devel-
opment of systems for question answering has been investi-
gated for some time, and has been allocated significant hu-
man resources. This human investment has prompted the
investigation of machine learning techniques for different
aspects of question answering, e.g., [Suzuki et al., 2002;
Zhang and Lee, 2003]. The research discussed in this paper
is part of this trend. We report on the application of machine
learning techniques for the following tasks.

• Query analysis – where we automatically classify queries
according to their type (Section 2.2). This classification is
used in the sentence selection process.

• Document retrieval – where we learn features of query
words that affect retrieval performance (Section 3).

• Sentence selection – where we learn features of queries
and of their relationship with candidate sentences that
help us find sentences that are most likely to contain the
answer to a query (Section 4.3). We are currently focus-
ing on factoid answers. However, our techniques may be
adapted to extracting other types of answers from candi-
date sentences.

In Sections 2, 3 and 4, we describe our use of machine
learning techniques and the obtained results for query clas-
sification, document retrieval and sentence selection respec-
tively. In Section 5 we discuss related research, followed by
concluding remarks.

2 Query Analysis
Query analysis consists of two main sub-tasks: feature ex-
traction and query classification. Feature extraction obtains
features that are useful for classification as well as for later
stages of the question answering process. Query classifica-
tion divides queries into different question types, which are
indicative of the kind of answer that is expected. The idea is
that this distinction should assist in the sentence selection pro-
cess (and later in answer extraction). Hence, the Support Vec-
tor Machines (SVMs) used for sentence selection are trained
separately for each question type (Section 4.3).

2.1 Query feature extraction

We extract 11 query features that are used to train the SVM
that performs query classification (Section 2.2) and the SVM
that performs sentence selection (Section 4.3). Our SVMs
are trained using SVMlight (http://svmlight.joachims.
org/). The query features are obtained by first parsing the
query using Charniak’s probabilistic parser (ftp://ftp.
cs.brown.edu/pub/nlparser/),1 and then performing
rule-based extraction. The application of the extraction rules
depends on the syntactic structure of the query as described
below. Figure 1 illustrates the parse tree and the seven non-
null features for the query “What two European countries are
connected by the St. Gotthard Tunnel under the Alps?”.

• Topic – what the query is about. The topic is chosen in
the following order: (1) the first named entity in the query,
or (2) the head noun of a what/which question, or (3) the
grammatical object, or else (4) the first NP in the sentence.

• Answer type – the type of the expected answer. If the
query starts with a [wh NP], the answer type is the NP.
Otherwise, if the question has the form [wh be OBJ],
then the answer type is the NP of the object, e.g., who
was the US president in 1929?

• Action – the main verb in the query if it isn’t “be”, or the
main verb from the relative phrase (RelP) if the query has
the form [wh be NP RelP] or [wh NP be NP RelP].

• Named entities – sets of proper nouns that appear in the
same noun group.

1Charniak’s parser was trained on the Penn Treebank corpus,
which contains mainly declarative sentences. In the future, we plan
to retrain the parser on a corpus that includes more questions.

KRAQ'05 - IJCAI workshop - July 30th 2005 89

Query:
What two European countries are connected by the
St. Gotthard Tunnel under the Alps?

Parse tree:
(S1

(SBARQ
(WHNP (WP What))
(SQ (NP (CD two) (NNP European) (NNS countries))

(VP (AUX are)
(VP (VBN connected)

(PP (IN by)
(NP (NP (DT the) (NNP St.)

(NNP Gotthard) (NN Tunnel))
(PP (IN under) (NP (DT the)

(NNP Alps))))))))
(. ?)))

Features:
TOPIC: [European]
ANSWER TYPE: [two European countries]
ACTION: [connected]
NAMED ENTITIES: [European|St. Gotthard|Alps]
SUBJECT: [two European countries]
CONSTRAINTS: prepP [by the St. Gotthard Tunnel|

under the Alps]
REMAINING LEMMAS: [What are ?]

Figure 1: Parse tree and features for a sample query.

• Subject – the grammatical subject of the query. In gen-
eral, the subject is the first NP in a query. For queries that
have a relative phrase, the subject is the NP to which the
relative phrase is attached; and if the query starts with a
PP, then the subject is the NP of the PP.

• Object – the grammatical object of the query. If a query
has a relative phrase, this is the object of the relative
phrase. Otherwise, it is the object of the main verb.

• Adverbial, adjectival, verb-based and prepositional
constraints – these contain phrases found anywhere in
the query, except for phrases inside the NPs listed in other
features (but they include any other phrases that are at-
tached to these NPs).

• Remaining lemmas – query lemmas that are not in any
of the other features.

These syntactic features were selected because (1) they
carry semantic content which has the potential to lead to the
correct answer, and (2) they contain text segments that would
normally be found together in the vicinity of the correct an-
swer. The idea is that these distinctions will enable the SVM
to assign higher weights to features that are important for
identifying an answer (Section 4.3).

2.2 Query classification
We have identified the following 11 query types, which are
indicative of the kind of answer that is expected: location,
number, time, attribute, person, process, term, organization,
howDoYouSay, object and other. The first five query types,
which are detailed below, comprise 85% of the queries in
TREC11 and TREC12. The results presented in Section 4.5
are for these query types.
• location, e.g., “In what country did the game of croquet

originate?”.

• number, e.g., “How many chromosomes does a human
zygote have?”.

• time, e.g., “What year was Alaska purchased?”.
• attribute – an attribute of the query’s topic, e.g., “What

is Australia’s national blossom?”.
• person, e.g., “Who is Tom Cruise married to?”.

It is worth noting that there is nothing intrinsically impor-
tant about these particular query types. The main factor is
their potential to improve question-answering performance.

We used an SVM to classify queries into these query types
[Kowalczyk et al., 2004]. The SVM was trained on the fea-
tures described in Section 2.1, plus two WordNet features
[Miller et al., 1990]: the top four WordNet senses for (1) the
Action and (2) the Answer Type of the query. The SVM ob-
tained an average recall of 92% and average precision of 93%
(averaged over 20 runs) for the 911 queries from TREC11 and
TREC12.

3 Document Retrieval
Document retrieval is done using the vector space model
moderated by boolean constraints and two adjustments to the
TF.IDF score. As seen in Table 1, these modifications signifi-
cantly boost retrieval performance.

The following constraints were applied to filter documents
returned by the vector space model.

C1: At least one of the proper nouns in a query must appear
in a candidate document.

C2: If a query has two or more content lemmas (i.e., not
a stop word), then the candidate document must have at
least two content lemmas.2

The following adjustments were applied to the TF.IDF
score of a document.
• Adjustment suggested by decision graphs – we used deci-

sion graphs [Oliver, 1993] (an extension of the decision
trees described in [Wallace and Patrick, 1993]) to ana-
lyze the influence of frequency-based query features on
retrieval performance. DGraf, the decision graph pro-
gram, identified a region of high retrieval performance for
queries whose lemmas have a frequency below a threshold
τF = 1600 [Zukerman et al., 2003]. We treat this obser-
vation as a suggestion for increasing the TF.IDF score of a
lemma l as follows.

TF.IDFα(l) =

{

αTF.IDF(l) if Freq(l)< τF

TF.IDF(l) otherwise

where α (> 1) is an empirically determined factor.
• Empirically obtained adjustment – the TF.IDF score of a

document is given extra weight based on the number of
query lemmas found in the document, as follows.

TF.IDF(D) = #ofLemmasFoundβ

n
∑

i=1

TF.IDFα(li)

where n is the number of content lemmas in a query, β
is an empirically determined exponent, and li is the ith
lemma in the query.

2Document retrieval is lemma based, i.e., document words are
lemmatized prior to indexing, and query words prior to retrieval.

KRAQ'05 - IJCAI workshop - July 30th 2005 90

Retrieval method Answ’ble
queries

200 docs:
Basic TF.IDF 52.7%
TF.IDF+ constraints 69.6%
TF.IDF+ constraints + LemmasFound 84.5%
TF.IDF+ constraints + LemmasFound + DGraf 87.5%

100 docs: TF.IDF+ const + LemFound + DGraf 84.1%
50 docs: TF.IDF+ const + LemFound + DGraf 79.0%

Table 1: Performance of four retrieval methods for 200 doc-
uments. Performance of best method for 100 and 50 docu-
ments.

The retrieval performance of our system was assessed us-
ing the number of answerable queries, which returns the
number of queries for which the system has retrieved at least
one document that contains the answer to a query [Zuker-
man et al., 2003]. This measure gives an upper bound for
the performance of a retrieval or question-answering system.
Nonetheless, we find it more suitable for the question an-
swering task than the standard precision measure [Salton and
McGill, 1983]. For example, consider a situation where 10
correct documents are retrieved for each of 2 queries and 0
correct documents for each of 3 queries, compared to a situ-
ation where 2 correct documents are retrieved for each of 5
queries. Average precision would yield a better score for the
first situation, failing to address the question of interest for
the question-answering task, namely how many queries have
a chance of being answered, which is 2 in the first case and
5 in the second case. This is the number represented in our
number of answerable queries measure.

Table 1 shows the results obtained for the different re-
trieval methods when the top 200 documents are retrieved.3

These results were obtained with α = 3 and β = 4 (these
values yielded the best performance among the tried values
1 ≤ α ≤ 4 and 1 ≤ β ≤ 6). It is worth noting that if we
accept correct answers from other retrieved documents (in
addition to the documents identified by TREC), answerable
queries goes up to 89.2% for 200 retrieved documents. How-
ever, at present, we are using only the TREC-identified doc-
uments for the sentence selection stage. Table 1 also shows
the retrieval performance obtained for the top 100 and top 50
documents, which are considered in our sentence selection
experiments (Section 4).

4 Sentence Selection
Our sentence selection process receives as input queries for
which our document retrieval process found at least one cor-
rect document among the top M retrieved documents. We
have experimented with lower values of M than those used
for document retrieval (M = 100 and M = 50 instead
of 200) owing to time and computer memory limitations.
Columns 4 and 5 in Table 2 show the breakdown of the input
queries with answers in the top 100 and top 50 documents
according to the five main query categories.

3Our retrieval performance is calculated for the 842 TREC11 and
TREC12 queries that have answers according to the TREC judgment
files (Table 2).

Query type Number of queries
total w answers w answers w answers

in TREC in 100 docs in 50 docs
Location 207 198 180 175
Number 187 163 134 122
Time 145 139 121 115
Attribute 121 112 88 82
Person 118 106 93 86
Sub-total 778 718 616 580
Other 133 124 92 85
Total 911 842 708 665

Table 2: Five main query types at different stages of the ques-
tion answering process.

In order to isolate the different stages of the question an-
swering process, we train the sentence-selection SVM us-
ing the query classes that were employed to train the query-
classification SVM, rather than the classes returned by this
SVM (Section 2.2).

The sentence selection process progressively narrows
down the space where the answer to a query may be found,
starting from a set of documents, and ending with a set of
ranked sentences. In the next stage of our project, we will
consider the extraction of candidate answers from these sen-
tences.

The initial reduction steps are performed algorithmically,
and the ranking of sentences is done by means of SVMs –
one SVM for each type of query. The training (and testing)
is performed separately for each of the five main query types,
since each of these query types have different distinguishing
characteristics. Prior to generating candidate sentences for
SVM training and testing, we perform the following actions
on each of the top M retrieved documents: (1) document re-
duction, and (2) sentence filtering.

4.1 Document Reduction
In this step, we estimate the portion of a retrieved document
that is likely to contain the answer to a query, and retain only
this portion for further processing. First, we find the docu-
ment center – the shortest span in the document that contains
the query content lemmas that were found in the document.
For example, consider a query that contains content lemmas
l1l2l3. If only l1 and l3 appear in a document, and the shortest
span between these lemmas corresponds to positions p1 and
p3, then the document center comprises the lemmas between
these two positions. In addition, due to buffer-size limita-
tions, we remove documents whose center exceeds LC sen-
tences (LC = 40).

We then take LS sentences before and after the doc-
ument center (bounded by the beginning/end of the doc-
ument). These sentences plus the center constitute the
area of the document where the rest of the processing is
done. Figure 2 shows the ratio of positive to negative SVM
vectors (corresponding to sentences with and without cor-
rect answers respectively) as a function of LS for LS =
{2, 5, 10, 15, 20, 40}. As can be seen from this Figure, for
Time and Location queries, the number of negative vectors is

KRAQ'05 - IJCAI workshop - July 30th 2005 91

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 5 10 15 20 25 30 35 40

R
at

io
 o

f p
os

iti
ve

 to
 n

eg
at

iv
e

S
V

M
 v

ec
to

rs

No. of sentences before and after document center

Location
Number
Time
Attribute
Person

Figure 2: Ratio of positive to negative SVM vectors as a func-
tion of number of sentences before and after the document
center (top 50 documents).

about 10 times larger than the number of positive vectors, for
Person and Number queries, it is about 20 times larger, and
for Attribute queries about 50 times. In addition, for the first
four types of queries, the ratio of positive to negative vec-
tors improves slightly when two sentences around the center
are considered, while for Attribute queries, the ratio remains
fairly constant. In Section 4.5, we examine the relationship
between these ratios and question-answering performance.

4.2 Sentence Filtering
In this step, we eliminate sentences that are unlikely to con-
tain the answer to a query. To this effect, we (1) identify noun
groups (NGs) that are likely to meet the criteria of the query
type under consideration,4 and (2) remove sentences that are
unlikely to contain suitable answers.

Identifying NGs that meet the query criteria
First, we use Charniak’s probabilistic parser to parse all the
sentences obtained in the previous step, and extract all the
NGs from these parse trees. The identification of NGs that
meet the query criteria depends on the query type. We per-
form two types of NG identification: positive and negative.
• Positive identification consists of recognizing NGs that

meet the query criteria. This allows us to confidently re-
move the remaining candidate NGs. Numbers, and dates
and times have been automatically tagged in a copy of the
corpus, therefore positive identification is done for Num-
ber and Time queries. In addition, locations and people
are usually identified by means of proper nouns, hence we
retain only NGs composed mainly of proper nouns (possi-
bly interleaved with prepositions) for Location and Person
queries. In contrast, for Attribute queries we retain NGs
composed of common nouns.

• Negative identification consists of removing NGs that
clearly do not meet the query criteria. This is done using

4The answers to queries of the types considered in this paper are
NGs. Hence, in the rest of this paper, we will mention only NGs, but
our techniques are also applicable to answers that are verb groups.

manually constructed filter files, which contain designa-
tions for honorifics, locations (e.g., city, airport, school),
organizations (e.g., company, society), currency, etc, and
common people names. The choice of filter file(s) de-
pends on the query type. For instance, location desig-
nators are used to remove locations from Person queries
(e.g., “John Wayne Airport”).

In the future, we intend to investigate the use of a name-
entity recognizer as a filter in addition to or instead of these
processes.

Removing unpromising sentences
First, we remove the sentences that do not contain any of the
candidate NGs which remain after the previous step. We then
remove sentences that fail the following requirements: (1) the
sentence must contain at least one content lemma from the
SUBJECT or OBJECT of the query, and (2) the sentence must
contain at least one noun from one of the named entities in
the query. This filtering process eliminates about 80% of the
sentences that do not contain the answer to the queries, but
at the same time it eliminates about 60% of the sentences
that contain the answer. We are currently investigating filter-
ing processes that retain more sentences with correct answers
without increasing excessively the number of sentences with-
out correct answers.

4.3 Training the SVMs
The eventual objective of the SVMs is to identify NGs that
answer the given queries. However, our current focus is to
find sentences that contain the answer. Our SVMs are trained
and tested on the sentences in the document center plus LS

sentences before and after the document center. As indicated
in Section 4.1, we considered values for LS between 2 and
40. For LS = 2, this process generates about 34,000 sen-
tences per query type on average (averaged over the five query
types), of which only a small fraction are positive (i.e., con-
tain the answer).

We train a separate SVM for each query type, but the same
SVM components are used for all the query types. Each
sentence yields one SVM vector, which comprises 12 main
components: (1) whether the sentence answers the query
correctly; (2-11) one component for each of the first 10
query features described in Section 2 (at present we do not
use the Remaining Lemmas feature); and (12) an additional
“summary” component. That is, the general form of an SVM
vector is:

1 2 3 . . . 11 12
IsAnswer Topic AnswerType . . . PrepConstraint Summary

where positive vectors have a value of 1 for the IsAnswer
component, and negative vectors have a value of 0.

The 2nd to the 11th SVM component (for the first 10 query
features presented in Section 2.1) are described below, fol-
lowed by a description of the summary component. The ele-
ments of these components are illustrated with respect to the
sample query and candidate answer sentence in Figure 3.

Component for query feature f (10 components)
The SVM component for query feature fi (i = 1, . . . , 10)
represents different aspects of this feature and of its relation-
ship with a candidate sentence. This component comprises

KRAQ'05 - IJCAI workshop - July 30th 2005 92

Query:
What is the southwestern-most tip of England?

Parse tree:
(S1 (SBARQ (WHNP (WP What))

(SQ (VP (AUX is)
(NP (NP (DT the)

(X (JJ southwestern) (: -))
(JJS most) (NN tip))

(PP (IN of) (NP (NNP England))))))
(. ?)))

Features:
TOPIC: [England]
ANSWER TYPE: [the southwestern most tip of England]
NAMED ENTITIES: [England]
OBJECT: [the southwestern most tip of England]
REMAINING LEMMAS: [What is ?]

Sentence:
MARAZION, England The very southwestern tip of Eng-
land, the county of Cornwall is a place set apart.

Answer: Cornwall
Parse tree:
(S1
(S (NP (NNP MARAZION))

(PRN (, ,)
(S (NP (NNP England))

(VP (VBZ _)
(NP (NP (DT The) (ADJP (RB very)

(JJ southwestern))
(NN tip))

(PP (IN of) (NP (NNP England))))))
(, ,))

(NP (NP (DT the) (NN county))
(PP (IN of) (NP (NNP Cornwall))))

(VP (AUX is)
(NP (NP (DT a) (NN place))

(VP (VBN set) (ADVP (RB apart)))))
(. .)))

Figure 3: Sample query and candidate sentence from a document.

three segments: query only, similarity and similarity with
neighbouring sentences.
Query only provides information about the query itself.
This segment includes the following elements.
• Count – the number of content lemmas in the feature.
• IsQuote – whether the feature is a quote.

• ReltvAvgIDF=
avg IDF of feature lemmas

maxi{avg IDF of feature i lemmas}

This element represents the relative “importance” of the
query feature, i.e., features which contain lemmas that are
infrequent in the corpus are deemed more important than
features that contain frequent lemmas.

Similarity reflects the goodness of the match between the
content lemmas in the feature and the candidate sentence.
This segment will enable the SVM to identify which features
should be well represented in a successful sentence and which
are not so crucial. Similarity includes the following elements
(in the following equations, “lemmas” refers to content lem-
mas).
• Recall = # feature lemmas in sentence

feature lemmas
• Precision = # feature lemmas in sentence

lemmas in sentence
• FuzzyMatch=

feature lemmas in span
max{# feature lemmas,# lemmas in span}

where span is the shortest contiguous string (in the
sentence) that contains the feature lemmas. The inclusion
of feature lemmas in the denominator is necessary to
avoid anomalous results when only a few feature lemmas
appear in the sentence, and they are next to each other.
This yields a span (denominator) that is equal to the
numerator, and hence a value of 1 for FuzzyMatch, which
would wrongly indicate a good outcome. Note that this
measure replicates Recall if the span contains fewer
lemmas than the feature.

• TF.IDFRecall =
�

TF.IDF of feature lemmas in sentence
�

TF.IDF of feature lemmas
This element is like Recall, but uses the TF.IDF of each
feature lemma instead of 1.

For example, Recall is 0.75 for the OBJECT feature in the
example in Figure 3, as three of its content lemmas (“south-
western”, “tip” and “England”) appear in the sentence; Preci-
sion is 3/10; FuzzyMatch is 0.75, as the span “southwestern
tip of England” contains three of the content lemmas in the
feature; and TF.IDFRecall is 0.71.

Similarity with neighbouring sentences is like the above
Similarity segment, but calculated with respect to the sen-
tence before and the sentence after the current sentence (four
elements each for the sentence before and the sentence af-
ter). The idea is that even if the candidate sentence does not
contain query features, it could still contain the answer if the
features appear in neighbouring sentences and paragraphs.

This segment has two additional elements that indicate
whether neighbouring sentences or paragraphs contain infor-
mation relevant to the query.

• Sentence distance (in number of sentences) to the closest
sentence containing a lemma from the feature.

• Paragraph distance (in number of paragraphs) to the clos-
est paragraph containing a lemma from the feature.

Summary component

This component reflects the overall quality of a candidate sen-
tence. It contains the following elements:

• AveragePrecision, AverageRecall, AverageFuzzyMatch
and AverageTF.IDFRecall, averaged over the non-empty
features of the query.

• RatioNon-emptyFeatures =
query features with ≥ 1 lemma in sentence

non-empty query features
This element represents the proportion of non-empty
query features for which the sentence contains at least one
content lemma. For instance, RatioNon-emptyFeatures
for the example in Figure 3 is 1 (all the non-empty query
features, without counting REMAINING LEMMAS, appear
in the sentence).

KRAQ'05 - IJCAI workshop - July 30th 2005 93

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

%
 o

f a
ns

w
er

ab
le

 q
ue

rie
s

No. of sentences before & after document center

Location
Number
Time
Attribute
Person

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

%
 o

f a
ns

w
er

ab
le

 q
ue

rie
s

No. of sentences before & after document center

Location
Number
Time
Attribute
Person

(a) % answerable queries from queries with positive (b) % answerable queries from queries with answers in
vectors. retrieved documents.

Figure 4: Question answering performance for Location, Number, Time, Attribute and Person queries as a function of the
number of sentences before and after the document center; results for 50 retrieved documents and top 20 sentences returned by
the SVMs.

4.4 Selecting a Sentence
Since documents are sometimes replicated nearly verbatim in
different TREC news sources, a particular sentence may ap-
pear more than once in the list of candidate sentences. How-
ever, some values in its SVM vector (and its SVM score) may
differ if this sentence is preceded or followed by different sen-
tences. Thus, prior to sentence selection, we remove such du-
plicate sentences, retaining only the highest scoring one. The
candidate sentences are then sorted in descending order of
their score, and the top N sentences are returned. Our results
for N = 1, . . . , 20 are discussed in Section 4.5.

4.5 Evaluation
As stated above, the current focus of our evaluation is on the
identification of the sentence that contains the correct answer
to a query. Our evaluation was performed on the five main
query categories: location, number, time, attribute and per-
son. Owing to memory limitations, our SVM was trained
only on 20% of the queries for each of these categories, and
tested on 80% with five-fold cross validation.

First, we determined whether the positive-to-negative vec-
tor ratio depicted in Figure 2 is indicative of the ques-
tion answering performance of the system. To this effect,
we trained and tested the SVMs using different numbers
of sentences before and after the document center (LS =
{2, 5, 10, 15, 20, 40}). These trials were conducted for 50
and 100 retrieved documents. Interestingly, the number of
retrieved documents had a negligible effect on performance
(differences were below one standard deviation). Still, the
number of answerable queries for 50 retrieved documents was
slightly higher than for 100 documents for Attribute and Per-
son queries, and about the same for the other types of queries.
We postulate that this is because the additional retrieved doc-
uments yield a small increase in documents with answers and

a large increase in documents without answers, resulting in
the deterioration of the ratio of positive to negative SVM vec-
tors (according to Table 2, going from 50 to 100 retrieved
documents yields only 36 additional correct documents in to-
tal, while requiring the inspection of 50 additional documents
for each query).

Figures 4(a) and 4(b) depict the average percentage of an-
swerable queries in the top 20 sentences returned by each of
the five SVMs as a function of the value of LS for 50 re-
trieved documents. Figure 4(a) shows the precision of the
results returned by the SVMs, and Figure 4(b) depicts the
question-answering performance as a percentage of the an-
swerable queries from the retrieved documents. According to
both plots, the value of LS has a marginal effect on question-
answering performance, with a slightly better performance
obtained for LS = 2 for four query types (the best perfor-
mance for Time queries is obtained for LS = 20, but this
result is not statistically significant).

The distinction between queries with and without positive
vectors allows us to differentiate between two causes for fail-
ing to answer a query: failure due to shortcomings in our ma-
chine learning approach, i.e., features used in the SVMs, and
failure due to the removal of correct sentences by our filter-
ing process (Section 4.2). Our system exhibits a creditable
performance for Location queries according to both plots,
with Person queries yielding a somewhat lower performance.
In contrast, Time queries go from being the best perform-
ers in the positive-vectors plot to being third or fourth in the
documents-with-answers plot, with the performance of Num-
ber queries also dropping between both plots, although less
dramatically. This means that our filtering process is quite
discriminating for Time queries, and somewhat less discrim-
inating for Number queries, improving precision at the ex-
pense of coverage. Finally, Attribute queries exhibit the worst

KRAQ'05 - IJCAI workshop - July 30th 2005 94

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 0 2 4 6 8 10 12 14 16 18 20

N
o.

 o
f a

ns
w

er
ab

le
 q

ue
rie

s

No. of returned sentences

Location
Number
Time
Attribute
Person

Figure 5: Number of answerable queries for LS = 2 and 50
retrieved documents, for Location, Number, Time, Attribute
and Person queries, as a function of the number of sentences
returned by the SVMs (N = 1, 2, . . . , 20).

performance according to both plots. This is because an at-
tribute may be any noun group, while the answers to the other
four query types are more easily identifiable: number, and
time and date are tagged in the corpus, and person and loca-
tion are proper noun groups. Clearly, our sentence selection
performance can be improved by employing a better sentence
filtering process (Section 4.2). However, this process is more
challenging for Attribute queries than for the other types of
queries, due to the many kinds of potential answers for At-
tribute queries. This indicates that a finer classification of
Attribute queries may be useful.

Overall, the best performance is obtained when 50 docu-
ments are retrieved, and only two sentences before and after
the document center are considered. We now examine the
results obtained with this setting in further detail. Figure 5
depicts the average number of answerable queries for the five
query types as a function of the number of sentences returned
by the SVMs (N = 1, . . . , 20); the error bars show one
standard deviation. Recall that these results were obtained
for 80% testing. For instance, the 109 answerable Location
queries for 20 returned sentences constitute 78% of the 140
Location queries in the test set. As expected, the percentage
of answerable queries goes up with the number of sentences.
In fact, the gradient of the curves is still substantial at 20 sen-
tences, indicating that additional sentences should be consid-
ered.

Our results indicate that our approach shows promise and
merits further investigation. Specifically, we are currently
pursuing two main avenues of research: (1) the identification
of additional SVM attributes; and (2) the application of more
sensitive, query-type relevant filtering rules.

5 Related Research
Machine learning techniques have been used mainly for query
classification and answer selection.

Zhang and Lee [2003] and Hacioglu and Ward [2003] used
SVMs for automatic query classification. Zhang and Lee

considered two grains of classifications, coarse (6 classes)
and fine (50 classes), while Hacioglu and Ward considered a
fine-grained classification only. Zhang and Lee experimented
with five machine learning methods and with bag-of-words
and syntactic attributes, while Hacioglu and Ward used word-
based primitive attributes, which were then composed into
complex attributes. We considered an intermediate grain clas-
sification of 11 classes. Although we used only a modified
bag-of-words approach, we obtained significantly better re-
sults for our classification than those obtained by Zhang and
Lee [2003] for a coarse classification. However, as seen in
Section 4.5, our sentence selection results show that our at-
tribute class may be too broad, and could benefit from a finer
classification.

Several researchers applied machine learning techniques
to learn answer selection patterns, e.g., [Radev et al., 2000;
Pasca and Harabagiu, 2001; Suzuki et al., 2002; Echihabi and
Marcu, 2003]. Radev et al. [2000] annotated spans in the
corpus with labels that indicate the type of the information
in the spans, and trained a regression algorithm to learn the
weights of attributes extracted from candidate answer spans.
These weights were then used to rank the spans. Pasca and
Harabagiu [2001] employed a perceptron to learn a compari-
son function used to rank candidate answers. Both Radev et
al. and Pasca and Harabagiu used attributes that reflect the
extent of the match between the query terms and the terms in
a text snippet or span, e.g., number of matched query terms,
distance between query terms and a candidate answer of the
expected type, and order of query terms in the sentence. Such
attributes were also used by Suzuki et al. [2002]. However,
they considered more attributes than Radev et al. and Pasca
and Harabagiu, and distinguished between different types of
attributes, e.g., keyword, question focus, and semantic cate-
gory (examples of keyword attributes are: average number of
stems, inflections and parts-of-speech in the query that match
a candidate answer). Suzuki et al. compared the performance
of several supervised learning systems, showing that SVMs
outperform decision trees and maximum entropy. Echihabi
and Marcu [2003] adopted a different approach, where they
inferred answer patterns for queries. Echihabi and Marcu de-
rived answer patterns from sentences that contain the answer
to a query, and used these patterns to train a noisy channel
model to identify the maximum probability answer sentence
that “yields” a given query.

Our work combines sentence patterns with attribute extrac-
tion, as our system trains its SVMs on attributes that reflect
the relationship between semantic query features and candi-
date answers. Czuba et al. [2002] used attributes similar
to some of ours to train classifiers to predict whether a list
of retrieved sentences contains the answer to a query. This
indicates that our attributes show promise for the answer-
selection stage of our project.

6 Conclusion
We have described three components of a question answer-
ing system – query analysis, document retrieval and sentence
selection – focusing on their use of machine learning tech-
niques. In particular, we have examined the use of SVMs for
sentence selection, and described how we train SVMs using

KRAQ'05 - IJCAI workshop - July 30th 2005 95

attributes of semantic query features and attributes of the rela-
tionship between these features and candidate sentences. Our
results illustrate the promise of machine learning techniques
for different aspects of the question answering problem, and
indicate that significant progress can still be made before the
limits of this methodology are reached.

Acknowledgments
This research was supported in part by the ARC Centre for
Perceptive and Intelligent Machines in Complex Environ-
ments. The authors thank Eugene Charniak for his modifi-
cations to his probabilistic parser.

References
[Czuba et al., 2002] Krzysztof Czuba, John Prager, and Jen-

nifer Chu-Carroll. A machine-learning approach to in-
trospection in a question answering system. In ACL2002
– Proceedings of the ACL Workshop on Empirical meth-
ods in Natural Language Processing, pages 265–272,
Philadelphia, Pennsylvania, 2002.

[Echihabi and Marcu, 2003] Abdessamad Echihabi and
Daniel Marcu. A noisy-channel approach to question
answering. In ACL2003 – Proceedings of the 41st Annual
Meeting of the Association for Computational Linguistics,
pages 16–23, Sapporo, Japan, 2003.

[Hacioglu and Ward, 2003] Kadri Hacioglu and Wayne
Ward. Question classification with Support Vector Ma-
chines and error correcting codes. In Companion Volume
of the Proceedings of HLT-NAACL 2003 – Short Papers,
2003.

[Kowalczyk et al., 2004] Pawel Kowalczyk, Ingrid Zuker-
man, and Michael Niemann. Analyzing the effect of query
class on document retrieval performance. In AI’04 – Pro-
ceedings of the 17th Australian Joint Conference on Artifi-
cial Intelligence, pages 550–561, Cairns, Australia, 2004.

[Miller et al., 1990] George Miller, Richard Beckwith,
Christiane Fellbaum, Derek Gross, and Katherine Miller.
Introduction to WordNet: An on-line lexical database.
Journal of Lexicography, 3(4):235–244, 1990.

[Oliver, 1993] Jonathan J. Oliver. Decision graphs – an ex-
tension of decision trees. In Proceedings of the Fourth In-
ternational Workshop on Artificial Intelligence and Statis-
tics, pages 343–350, Fort Lauderdale, Florida, 1993.

[Pasca and Harabagiu, 2001] Marius Pasca and Sanda
Harabagiu. High performance question/answering. In
SIGIR’01 – Proceedings of the 24th ACM International
Conference on Research and Development in Information
Retrieval, pages 366–374, New Orleans, Louisiana, 2001.

[Radev et al., 2000] Dragomir Radev, John Prager, and Va-
lerie Samn. Ranking suspected answers to natural lan-
guage questions using predictive annotation. In Proceed-
ings of the Sixth Applied Natural Language Processing
Conference, pages 150–157, Seattle, Washington, 2000.

[Salton and McGill, 1983] G. Salton and M.J. McGill. An
Introduction to Modern Information Retrieval. McGraw
Hill, 1983.

[Suzuki et al., 2002] Jun Suzuki, Yutaka Sasaki, and Eisaku
Maeda. SVM answer selection for open-domain question
answering. In COLING’02 – Proceedings of the Inter-
national Conference on Computational Linguistics, pages
974–980, Taipei, Taiwan, 2002.

[Wallace and Patrick, 1993] C.S. Wallace and J.D. Patrick.
Coding decision trees. Machine Learning, 11:7–22, 1993.

[Zhang and Lee, 2003] Dell Zhang and Wee Sun Lee. Ques-
tion classification using Support Vector Machines. In SI-
GIR’03 – Proceedings of the 26th ACM International Con-
ference on Research and Development in Information Re-
trieval, pages 26–32, Toronto, Canada, 2003.

[Zukerman et al., 2003] Ingrid Zukerman, Bhavani Raskutti,
and Yingying Wen. Query expansion and query reduction
in document retrieval. In ICTAI2003 – Proceedings of the
15th International Conference on Tools with Artificial In-
telligence, pages 552–559, Sacramento, California, 2003.

KRAQ'05 - IJCAI workshop - July 30th 2005 96

Abstract
Because of the current information overload, in-
formation synthesis by the machine becomes in-
creasingly important. Information synthesis from
text regards the composition or combination of di-
verse content parts or elements so as to form a co-
herent whole. We define information synthesis
from a cognitive and linguistic viewpoint. We clar-
ify its relation to question answering, summariza-
tion, and linking of information. An overview of
the many applications in professional and Web
contexts is given.

The second part of the talk focuses on the tech-
nologies. A short overview of current technologies
for information synthesis from text introduces the
most promising research avenues. Especially the
role of information extraction technologies is
stressed as they offer the necessary basis for repre-
senting content and for reasoning with it. Informa-
tion extraction has the additional advantage that it
can be applied – though often relying on separate
methods - on different media (e.g., text, images,
video) allowing information synthesis across me-
dia.

A final part discusses the bottlenecks when de-
veloping synthesis systems for realistic text reposi-
tories in open and closed domains.

Information Synthesis: A Glance at the Future

Marie-Francine Moens
Katholieke Universiteit Leuven

Tiensestraat 41 B-3000 Leuven, Belgium
marie-france.moens@law.kuleuven.be

KRAQ'05 - IJCAI workshop - July 30th 2005 97

Where are the ‘Killer Applications’ of Restricted Domain Question
Answering?

Michael Minock

Ume̊a University

Department of Computing Science

C445 MIT-huset Ume̊a, Sweden 90187

mjm@cs.umu.se

Abstract

From a language technologist’s point of view,
the penetration of natural language interfaces
onto today’s web is somewhat disappointing; it
seems that information retrieval, forms based,
metaphor-based and hyper-link interfaces dom-
inate all points of the design space. While
open domain question answering promises to
rival or extend information retrieval systems,
restricted domain question answering systems
likewise represent a rival to forms-based inter-
faces. The purpose of this position paper is to
discuss the properties of potential web-based
‘killer applications’ of restricted domain ques-
tion answering. The paper entertains a set of
candidate domains, proposes a general method-
ology for building restricted domain interfaces
and highlights some near term challenges that
must be confronted.

1 Introduction

Although open domain question answering is a very
promising area, the position in this paper is that an
effort must likewise be undertaken for a set of promis-
ing restricted domains. Though one may view restricted
domain question answering as a special case of open
domain question answering, employing an isolated set
of domain documents and perhaps a tailored lexicon
and grammar, the view here is more expansive; it is
assumed that domain knowledge and data are explic-
itly represented to one degree or another. This en-
ables the introduction of domain concepts and facts
in addition to domain ‘documents’. It also points to-
ward a revival of question answering over databases [1;
3]. In any case a resulting restricted domain question
answering system, with access to domain knowledge, is
presumably more able to use reasoning in support of
question answering. The answer itself is expected to be
direct, consisting of some combination of natural lan-
guage, tabular data, graphs, video clips, documents, etc.

This paper shall refrain from making explicit assump-
tions about the nature of a representation backing a re-
stricted domain system, however it is assumed that it

will consist of a conceptual model (or ontology) which
covers some significant number of entities (instances or
assertions). We assume that this domain information is
built-up and maintained in some coherent, quality state
through some combination of fact extraction from a set
of documents and hand crafted knowledge representa-
tions or databases. Furthermore, and perhaps optimisti-
cally, we assume that a suitable natural language inter-
face may be built over a given domain that: 1.) lets the
user pose questions in a full natural language; 2.) offers
paraphrases when user questions are unclear or ambigu-
ous; 3.) accurately describes answers to avoid misunder-
standings. Given these assumptions, the thought exper-
iment in this paper is to ask, assuming that problems
of representation and natural language processing can
be handled, what domains are ripe for restricted domain
question answering on the web? Since most web users
are already comfortable with key-word search, forms and
hyper-links, the application of natural language question
answering to a restricted domain must somehow eclipse
these techniques, individually or in combination.

Section 2 of this position paper outlines some desider-
ata for promising restricted domains. Section 3 proposes
a set of restricted domains and discusses these propos-
als in relation to the desiderata. Section 4 proposes a
general development methodology for building restricted
domain question answering systems. Section 5 discusses
some of the high priority challenges that need to be ad-
dressed to open the way for the deployment of such sys-
tems. Section 6 concludes this position paper.

2 Desiderata for Restricted Domains

To enjoy success on the web, a restricted domain must
be:

D1: Circumscribed

D1.1: topic is focussed

D1.2: level of detail is evident

D1.2: knowledge may be represented and data is fac-
tual

D2: Complex

D2.1: spans more than several concepts

KRAQ'05 - IJCAI workshop - July 30th 2005 98

D2.2: entities have complex properties and are in-
volved in complex relationships

D2.3: numerous entities

D3: Practical

D3.1: answers to single sentence questions are useful
to an identified group of users

D3.2: data and knowledge acquisition and mainte-
nance is feasible

D3.3: query volume is high

2.1 Circumscribed

If D1.1 is adhered to a user may ascribe a bounded un-
derstanding to the system and thus revisit the system
when they wish to know something about the domain.
Normally this is not be too difficult to achieve. If for in-
stance we pick the domain of ‘Aquarium Fish: Species,
Habits and Care’ a user would have a reasonable idea of
what the domain encompasses, though they would per-
haps need to experiment a bit to get an idea. If the
domain is too general, say ‘Current events’, then the
user might have a bit more difficulty ascertaining and
remembering what the system really ‘knows’ about.

Though D1.1 bounds the topic in conceptual space,
D1.2 bounds the level of detail that is to be captured.
For example assume that we have the topic ‘World War
II: leaders, footage and battles’. It may be that we could
ask questions such as “show some footage of the battle
of Britain”, but of questions such as “which was the first
suburb of Minsk to fall to the Nazi armies?” are not
likely to be represented.

Another consideration is whether the information of
the domain is simple enough to be adequately captured
with contemporary knowledge and data representation.
For example the aquarium domain is probably somewhat
simpler ontologically that the World War II domain. The
judgement of the knowledge requirements is qualitative,
but, unlike our computers we do have common sense and
can rate certain applications as requiring significantly
more knowledge representation requirements than oth-
ers.

2.2 Complex

The key issue here is to insure that the domain has suf-
ficient structure to warrant a question answering inter-
face. For example if D2.1 is not adhered to and the
domain is spread over only a few concepts (tables), then
a forms based interface will probably suffice. For ex-
ample if we consider flight information of a particular
airline (e.g. www.sas.se), we see that a forms based in-
terface suffices. At one point however, when the schema
spans more than a few concepts, standard forms based
approaches break down. It is at this point that other
techniques become necessary such as query construction
tools, visual query languages, hierarchies of forms, natu-
ral language menus, etc. It stands to reason that such a
point is also where natural language question answering
may find a break through as well.

If, in violation of D2.2, the objects of user interest re-
ally don’t have complex properties associated with them
other than their own names or textual content, then per-
haps a key-word based search techniques is most appro-
priate. Consider for example a set of documents that
have only very coarse descriptors and sets of associated
keyword. Since there are only very simple predicates
that objects may satisfy, an ‘advanced search’ option
that mixes keyword and simple predication (e.g. date,
domain name, etc.) will suffice.

Naturally, as noted in D2.3, if the number of entities
in the domain is limited then the user would probably
be better off just reading a list or navigating through a
hypertext document.

2.3 Practical

Since we expect single sentence questions, naturally a
user should be able to get something of value as an an-
swer. Thus if a domain fails D3.1 and the content is
either too well known or of very marginal interest, then
who will be interested in querying it? For example if
one has a geography database of the capitals of various
countries, who, other than those interested in testing the
system, would really use such an interface. A better op-
tion is to click through the CIA world fact book. The
same is true for a database over relatively uninteresting
data. If for instance, I put my contacts and calendar into
a database, who other than myself would really be inter-
ested in querying it. Again we have to use our common
sense to gauge the how well a domain meets D3.1.

The consideration in D3.2 is how feasible is it to build
a representation of the domain. In general the cost of
constructing the database and its interface’s linguistic
configuration must be justified by the quantity of queries
that are posed over the lifetime of the interface (D3.3).
Factors such as the timeliness of the data and the speed
at which users wish to know such data enter into judging
a candidate domain on these measures.

2.4 Correlations among the Desiderata

Naturally there are correlations among the desiderata
above. For example if a domain qualifies on D2.1 then
it is likely to qualify on D2.2 and D2.3 as well. In fact
all the sub-desiderata of the three major desiderata seem
to positively correlate. Moreover D1 and D2 on a whole
seem to be inversely correlated.

Of course these desiderata are simply a set of charac-
teristics arrived at through introspection and are merely
subjective judgments, overlapping and probably incom-
plete. Still they provide a convenient starting point to
organize the search for the illusive ‘killer application’ of
restricted domain questions answering.

3 Some Candidate Domains

We now evaluate a set of application domains. These
domains are introduced with a simple description fol-
lowed by an opinion of how well they rate on the above
desiderata.

KRAQ'05 - IJCAI workshop - July 30th 2005 99

A1: NLI to a photo album: Pictures are classified
based on when and where they are taken, by who,
of what, of whom, etc. This application scores well
on D1, but poorly on D2.1 and D2.2. A hybrid ap-
proach based on key word search of picture captions
and forms based predications on picture date, size,
location is deemed to be a superior approach.

A2: Simple geography facts: Users may ask ques-
tions about cities, countries, languages, religions
and ethnic groups. This application scores relatively
well on D1 and D2, though it could be argued that
D1.2 is a little weak. The problem is mostly D3.1.
Still there is some hope that with more complete
data and integration of maps, etc. that some type
of useful interface will emerge. An initial example
of such a domain may be accessed through the in-
terface [6] at www.cs.umu.se/~mjm/step which is
backed by the Mondial data set[5].

A3: Bus schedules: An interface allowing residents to
query for times and destination of busses within the
local community. This application scores well on
D1, but perhaps less well on D2, especially D2.1
and D2.3. For D3 it seems like it could generate a
fair number of queries especially if the interface was
readily accessible via mobile devices. An example
interface of this type may be accessed at www.idi.
ntnu.no/~tagore/bustuc/

A4: City events information: An interface to city
events, hotels, restaurants and other attractions.
This type of application does a fair job on D1 and
a good job on D2 if the city is large. Some issues
surround D1.2. If the city is a popular tourist des-
tination it could do well on D3.1 and D3.3 as well.
D3.2 is something of a weak spot, but it could be
offset by D3.3. The work [7] discusses such an in-
terface for the city of Cottbus.

A5: Natural language assistant to a GIS: Allow for
natural language querying of a wide variety of loca-
tions on a map. For example “show the houses that
are worth between 100k and 200k dollars that are
less than 10km from a lake.” Such an application
scores OK on D1, though there are some questions
surrounding spatial representation in D1.3. Pro-
vided that there are numerous types of objects rep-
resented on the map with complex properties, it is
likely that the application will score well on D2 as
well. The site could generate enough interest to jus-
tify the considerable cost associate with D3.2. One
specific idea is to build an interface to the UNESCO
world heritage sites database.

A6: Nobel prize database: A database that contains
information on the winners of the Nobel prizes in-
cluding nationality, pictures, age, academic affilia-
tion, etc. This idea rates well on D1, and receives
a perhaps just passing score on D2. The database
itself does not seem to be difficult to build and does
not need to be updated often. Finally the domain

might be of interest to the public.

A7: World Cup scores and highlights: Allows for
users to query for games, player and team statistics
for the world cup tournament. This domain rates
well on D1 and D2. Although the cost of build-
ing a database may be considerable, if the interface
worked well, the expected number of queries may
also expected to be high.

A8: Software catalog: Allows for users to query for
software with certain properties, running on differ-
ent platforms, etc. This type of domain is a bit
weak on D1. There are simply so many different
concepts that might be involved. The system is cer-
tainly complex enough (D2) and for D3 there seems
to be a great need for this type of service, though
it must be said that building and maintaining the
database is likely to be a very difficult task.

A9: Continental European travel information: Al-
lows users to pose queries over train schedules, at-
tractions, hotels, etc. This domain has difficulties
with D1 but does well on D2. It may have difficul-
ties with D3.2, but this could be offset with D3.3.
A fragment of this domain has been treated in [2].

4 A Proposed Development

Methodology

The following is a proposed methodology to roll out a
restricted domain question answering system:

S1: Identify a domain with the above desiderata

S2: Collect a large number of candidate questions over
the domain.

S3: Build a conceptual model that covers the bulk of
questions from S2.

S4: Define a representational model that corresponds to
the conceptual model of S3.

S5: Populate the representational model with ’docu-
ments’ and facts

S6: Configure the natural language interface over the
representational model

S7: Offer the system to a user community

Note that S2 may be carried out through a brain
storming session or through hidden operator (“wizard
of Oz’) experiments with a sample user group. Note
that steps S3, S4 and most importantly S5 are carried
out after the selection of the domain; in general we view
the prospects of using legacy databases without signif-
icant restructuring as overly optimistic. Step S6 is the
configuration of the natural language interface over the
restricted domain. Note that this step will probably in-
volve significant work even if general linguistic grammars
are used; mapping domain independent grammars to re-
stricted domain models is very challenging and can only
be partly automated. Finally in S7 the system is pre-
sented to a user community. At this point S7 becomes a

KRAQ'05 - IJCAI workshop - July 30th 2005 100

source of queries and the development iterates through
steps S2 through S7 ad infinitum.

5 Some Challenges

Of course each domain of section 3 has different ontolog-
ical requirements, and thus have separate challenges, not
addressed here, that must be confronted. The challenges
sited in this section apply to all the candidate domains.

5.1 Natural Language Processing

Needless to say, the natural language interfaces to re-
stricted domains must be sophisticated. One key issue is
that interfaces must support both generation and under-
standing; a system must be able to paraphrase user ques-
tions either during answer presentation or in the case of
a low confidence parses. Another issue is that the sys-
tems will need to be able to support some special types
of questions. In particular it seems that superlatives are
a difficult type of question which will need to be parsed
(e.g. “Give the person who has won the most Nobel
prizes.”). A variant of this type of question is to request
the top ranking set of answers (e.g. “Give the 10 most
populated countries in Asia.”). Mapping such requests
to the logic that expressed them is non-trivial. Finally
it should be noted that the natural language interfaces
must be linguistically complete enough to offer to parse
the vast majority of questions over the domain. This
includes some method to cope with non syntactic inputs
as well as a tolerance for simple spelling errors.

5.2 Cooperative Query Answering

It seems that most if not all domains will need to have at
least some support for cooperative query answering [4].
At its core this means support for automated or semi au-
tomated query generalization and specialization. These
capabilities enable relaxation of queries which obtain no
answers and query refinement when user queries are too
broad. A capability of identifying false presuppositions
within user queries is also important (e.g. “List cities
in Grance with more than 1 million people” should be
answered with “There is no country or region named
‘Grance’.”).

Somewhat outside the traditional topics of cooperative
querying answering, systems must in one way or another
handle conceptual and data incompleteness. Conceptual
incompleteness may perhaps be handled by extending
the domain model with dummy concepts near to the do-
main topic. Meta-level responses would be generated
when user queries touch upon these out of range con-
cepts. Additionally logical meta-data may be used in
cases that there is data incompleteness (e.g. “Give the
cities in Sweden” could be answered with “the cities in
Sweden are ..., but the database only contains cities in
Sweden with more than 20,000 people.”)

5.3 Open Evaluation

To facilitate better comparison of systems, restricted
domain query answer prototypes should be available

for anonymous querying on the web. The page at
www.cs.umu.se/~mjm/step lists all the systems of which
I am aware (including my own system STEP [6]). Ad-
ditionally, for those who do offer web demonstrations, it
would be helpful to publish the system’s complete con-
figuration. Naturally it would also be helpful if all do-
main data was available as well. If more groups were to
do this, perhaps more systematic comparisons of various
techniques could be carried out.

6 Conclusions

This position paper has proposed that concerted efforts
be made to promote restricted domain question answer-
ing on the web. Web interfaces make no special assump-
tions about the user group (visually impaired, talking
on a phone, etc.) and because of this, we must confront
the fact that other interface techniques, such as forms,
hyper-links, menus, key-word searches will compete di-
rectly with natural language interfaces. Still, it is ar-
gued here that there is a set of circumscribed, complex
and practical domains that are best served by natural
language question answer interface. Such applications
constitute a break through point for natural language
access to structured data/knowledge. If a group can de-
ploy such a solution that always beats forms based and
keyword based rivals, this will go a long way toward vi-
talizing work in natural language interfaces and ontolo-
gies for that matter.

References

[1] I. Androutsopoulos and G.D. Ritchie. Database in-
terfaces. In R. Dale, H. Moisl, and H. Somers,
editors, Handbook of Natural Language Processing,
pages 209–240. Marcel Dekker Inc., 2000.

[2] F. Benamara. Cooperative question answering in
restricted domain : the WEBCOOP experiment.
In ACL04 workshop on Question Answering in Re-
stricted Domains, 2004.

[3] A. Copestake and K. Sparck Jones. Natural language
interfaces to databases. The Natural Language Re-
view, 5(4):225–249, 1990.

[4] T. Gaasterland, P. Godfrey, and J. Minker. An
overview of cooperative answering. Intelligent Infor-
mation Systems, 1(2):127–157, 1992.

[5] W. May. Information extraction and integration with
Florid: The Mondial case study. Technical Report
131, Universität Freiburg, Institut für Informatik,
1999.

[6] M. Minock. A phrasal approach to natural language
access over relational databases. In Proc. of NLDB,
Alicante, Spain, 2005.

[7] B. Thalheim and T. Kobienia. Generating DB
queries for web NL requests using schema informa-
tion and DB content. In Proc. of NLDB, pages 205–
209, 2001.

KRAQ'05 - IJCAI workshop - July 30th 2005 101

	Foreword.pdf
	Session 2 13h30-15h00
	Session 3 15h30-16h45
	Foreword
	This relatively new area of research includes the following
	The programme committee was the following, we warmly thank a
	Farah Benamara, IRIT, France�Johan Bos, University of Edinbu
	Farah Benamara, Marie-Francine Moens, Patrick Saint-Dizier

