-rw-r--r-- | src/Makefile.am | 2 | ||||
-rw-r--r-- | src/controller/callbacks/reshape.c | 2 | ||||
-rw-r--r-- | src/db/dbconnect.sqc | 12 | ||||
-rw-r--r-- | src/model/data/base.sqc | 2 | ||||
-rw-r--r-- | src/model/state/state.h | 3 | ||||
-rw-r--r-- | src/util/check_error.c | 6 | ||||
-rw-r--r-- | src/util/check_error_db.c | 13 | ||||
-rw-r--r-- | src/util/check_error_db.h | 9 | ||||
-rw-r--r-- | test/distance_sanity_check/gi_227977170_78032581.png | bin | 0 -> 51161 bytes | |||
-rw-r--r-- | test/entropy/Align2Ref.m | 24 | ||||
-rw-r--r-- | test/entropy/CalculateEntropy.m | 15 | ||||
-rw-r--r-- | test/entropy/CalculateProteinEntropy.m | 25 | ||||
-rw-r--r-- | test/entropy/FastNWalign2.c | 94 | ||||
-rw-r--r-- | test/entropy/GenomeAlignments.m | 31 | ||||
-rw-r--r-- | test/entropy/GenomePairwiseDist.m | 98 | ||||
-rw-r--r-- | test/entropy/RefineAlignments.m | 276 | ||||
-rw-r--r-- | test/entropy/don_anal.m | 40 | ||||
-rw-r--r-- | test/entropy/nwalign_mod.m | 637 |
18 files changed, 1280 insertions, 9 deletions
diff --git a/test/entropy/RefineAlignments.m b/test/entropy/RefineAlignments.m new file mode 100644 index 0000000..0e69275 --- a/dev/null +++ b/test/entropy/RefineAlignments.m @@ -0,0 +1,276 @@ +function [OUT_ALIGN cur_score] = RefineAlignments(IN_ALIGN, varargin)
+% RefineAlignments
+% Uses an interative algorithm to improve the multiple alignments of
+% an input sequence. It will iteratively remove a fraction of the
+% sequences, compress any gaps, and then re-align. This will be done
+% for NUM_REPS.
+%
+% Written by Will Dampier. Contact at wnd22@drexel.edu
+% Version 1.0 on 10/23/09
+%
+% [OUT_ALIGN SCORE] = RefineAlignments(IN_ALIGN)
+%
+% IN_ALIGN A char-array representing a multiple alignment to be
+% refined.
+%
+% OUT_ALIGN The refined alignment.
+% SCORE The new alignment score.
+%
+%
+% Optional Arguements:
+%
+% 'Alphabet' Either 'AA' or 'NT' to indicate whether this is a
+% nucleotide or amino acid alignment.
+%
+% 'GapPenalty' The penalty for gaps. This is set at -8 by
+% default.
+%
+% 'DistMat' The distance matrix to use for the alignment
+% scoring. Default is BLOSUM50 for 'AA' and NUC44
+% for 'NT'
+%
+% 'NumReps' The number of refining iterations to do.
+%
+% 'NumTry' The number of tries to perform at each iteration.
+%
+% 'RefineType' Which type of refinement to perform. This can
+% be either 'STOCASTIC', 'DETERMINISTIC' or 'MIXED'.
+%
+% 'Display' A boolean indicating whether to display the output
+% at each iteration.
+%
+%
+
+
+
+
+RM_FRAC = 0.1;
+NUM_TRIES = 10;
+NUM_REPS = 100;
+alpha = 'aa';
+dist_mat = [];
+gap_penalty = -8;
+TYPE = 'mixed';
+disp_flag = true;
+
+for i = 1:2:length(varargin)
+ switch lower(varargin{i})
+
+ case 'alphabet'
+ if strcmpi('nt', varargin{i+1}) || strcmpi('aa', varargin{i+1})
+ alpha = varargin{i+1};
+ else
+ error('RefineAlignments:BADALPHA', ...
+ 'Arguement to "alphabet" must be "NT" or "AA"')
+ end
+ case 'gappenalty'
+ if isnumeric(varargin{i+1}) && varargin{i+1} < 0
+ gap_penalty = varargin{i+1};
+ else
+ error('RefineAlignments:BADGAP', ...
+ 'Arguement to "GapPenalty" must be negative numeric')
+ end
+ case 'distmat'
+ dist_mat = varargin{i+1};
+
+ case 'numreps'
+ if isnumeric(varargin{i+1}) && varargin{i+1} > 1
+ NUM_REPS = varargin{i+1};
+ else
+ error('RefineAlignments:BADREPS', ...
+ 'Arguement to NumReps must be a positive numeric')
+ end
+
+ case 'refinetype'
+ TYPE = varargin{i+1};
+
+ case 'display'
+ if islogical(varargin{i+1})
+ disp_flag = varargin{i+1};
+ else
+ error('RefineAlignments:DISPLAY', ...
+ 'Arguement to Display must be a boolean.')
+ end
+
+ otherwise
+ error('RefineAlignments:BADARG', 'Unknown arguement: %s', ...
+ lower(varargin{i}))
+
+ end
+end
+
+if isempty(dist_mat)
+ if strcmpi(alpha, 'nt')
+ dist_mat = nuc44;
+ toint = @nt2int;
+ else
+ dist_mat = blosum50;
+ toint = @aa2int;
+ end
+end
+
+dist_mat(end+1,:) = gap_penalty;
+dist_mat(:,end+1) = gap_penalty;
+dist_mat(end,end) = 0;
+
+switch upper(TYPE)
+ case 'MIXED'
+ is_stoch = true;
+ is_mix = true;
+ case 'STOCASTIC'
+ is_stoch = true;
+ is_mix = false;
+ case 'DETERMINISTIC'
+ is_stoch = false;
+ is_mix = false;
+end
+
+
+OUT_ALIGN = IN_ALIGN;
+cur_score = CalculateScore(OUT_ALIGN, dist_mat, toint);
+
+for i = 1:NUM_REPS
+
+ %determine whether to switch based on the "mix" factor
+ if is_mix
+ is_stoch = ~is_stoch;
+ end
+
+
+ rm_rows = GetRows(OUT_ALIGN, is_stoch, RM_FRAC, NUM_TRIES);
+ counter = 1;
+ while counter < NUM_TRIES
+ new_mat = SplitAndReAlign(OUT_ALIGN, rm_rows(:,counter), alpha);
+
+ new_score = CalculateScore(new_mat, dist_mat, toint);
+ if new_score > cur_score
+ if disp_flag
+ disp_cell = {'On Iter: ', num2str(i), ' Improved by: ', ...
+ num2str(abs(new_score-cur_score)), ' and by ', ...
+ num2str(abs(size(new_mat,2)-size(OUT_ALIGN,2))), ...
+ ' columns', ' Using stoch:', num2str(is_stoch)};
+ display([disp_cell{:}])
+ end
+ cur_score = new_score;
+ OUT_ALIGN = new_mat;
+ break
+ end
+ counter = counter + 1;
+ end
+end
+
+function rows_mat = GetRows(MAT, STOCH, RM_FRAC, NUM_TRIES)
+% GetRows
+% A helper function which determines the rows to split the alignment
+% with.
+%
+% MAT A char-array of the multiple alignment.
+% STOCH A boolean indicating whether to use a stochastic approach.
+% RM_FRAC The fraction of rows to remove.
+% NUM_TRIES The number of tries to return.
+%
+% rows_mat A matrix indicating which rows to remove.
+%
+
+if STOCH
+ rows_mat = rand(size(MAT,1),NUM_TRIES) > RM_FRAC;
+ if any(all(rows_mat,1)) || any(all(~rows_mat,1))
+ cols = any(all(rows_mat,1)) || any(all(~rows_mat,1));
+ rows_mat(1,cols) = ~rows_mat(1,cols);
+ end
+
+else
+ gap_mask = MAT =='-';
+ runs = FindRuns(gap_mask);
+ score = mode(runs.*(runs~=0))-min(runs);
+ [~, order] = sort(score, 'descend');
+ rm_rows = order(1:NUM_TRIES);
+ [~, norder] = sort(runs(:,rm_rows),'descend');
+ rows_mat = false(size(MAT,1), NUM_TRIES);
+ num_remove = ceil(RM_FRAC*size(MAT,1));
+ for i = 1:NUM_TRIES
+ rows_mat(norder(1:num_remove,i),i) = true;
+ end
+end
+
+function NEW_MAT = SplitAndReAlign(MAT, ROWS, alpha)
+% SplitAndReAlign
+% This will split the alignment matix based on the provided rows and
+% then create two profiles and re-align them.
+%
+% MAT A char-array of the alignment.
+% ROWS A boolean-array describing the switch between rows
+% alpha Either 'NT' or 'AA' to indicate which sequence profile to
+% create.
+%
+% NEW_MAT The ReAlinged alignment
+%
+
+mat1 = MAT(ROWS, :);
+mat2 = MAT(~ROWS, :);
+
+mat1(:,all(mat1 == '-',1)) = [];
+mat2(:,all(mat2 == '-',1)) = [];
+
+pmat1 = seqprofile(mat1, 'alphabet', alpha);
+pmat2 = seqprofile(mat2, 'alphabet', alpha);
+try
+ [~, ind1, ind2] = profalign(pmat1, pmat2);
+catch
+ ind1 = 1:size(pmat1,2);
+ ind2 = 1:size(pmat2,2);
+end
+
+NEW_MAT = char(0);
+NEW_MAT(ROWS, ind1) = mat1;
+NEW_MAT(~ROWS, ind2) = mat2;
+NEW_MAT(~isletter(NEW_MAT)) = '-';
+NEW_MAT(all(NEW_MAT == '-',1)) = [];
+
+
+
+
+function s = CalculateScore(MAT, DIST, FUN)
+% CalculateScore
+% A function which calculates the score of the alignment. This score
+% is based on the agreement between the consensus and each individual
+% alignment.
+%
+% MAT A char-array of a multiple alignment.
+% DIST A distance matrix which indicates the penalty for
+% mismatches.
+% FUN A function which converts letter to numbers such at nt2int
+% or aa2int.
+%
+% s The score for this alingment.
+%
+%
+
+cons = seqconsensus(MAT);
+num_cons = FUN(cons);
+num_align = FUN(MAT);
+ncons = repmat(num_cons(:), [size(num_align,1), 1]);
+nalign = num_align(:);
+lookupinds = sub2ind(size(DIST), ncons, nalign);
+s = sum(DIST(lookupinds));
+
+function reverse_looking = FindRuns(input)
+% FindRuns
+% Finds consecutive runs of 1's along the rows of a boolean array.
+%
+% INPUT = [1 1 1 0 0 0 1 0 1 0 1 1;
+% 0 1 1 1 0 1 1 0 0 1 1 1];
+% RL = [1 2 3 0 0 0 1 0 1 0 1 2;
+% [0 3 2 1 0 1 2 0 0 1 2 3];
+%
+
+[m,n] = size(input);
+reverse_looking = [zeros(1,m);input.'];
+reverse_looking = reverse_looking(:);
+p = find(~reverse_looking);
+reverse_looking(p) = [0;1-diff(p)];
+reverse_looking = reshape(cumsum(reverse_looking),[],m).';
+reverse_looking(:,1) = [];
+
+
+
|