1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
function [OUT_ALIGN cur_score] = RefineAlignments(IN_ALIGN, varargin)
% RefineAlignments
% Uses an interative algorithm to improve the multiple alignments of
% an input sequence. It will iteratively remove a fraction of the
% sequences, compress any gaps, and then re-align. This will be done
% for NUM_REPS.
%
% Written by Will Dampier. Contact at wnd22@drexel.edu
% Version 1.0 on 10/23/09
%
% [OUT_ALIGN SCORE] = RefineAlignments(IN_ALIGN)
%
% IN_ALIGN A char-array representing a multiple alignment to be
% refined.
%
% OUT_ALIGN The refined alignment.
% SCORE The new alignment score.
%
%
% Optional Arguements:
%
% 'Alphabet' Either 'AA' or 'NT' to indicate whether this is a
% nucleotide or amino acid alignment.
%
% 'GapPenalty' The penalty for gaps. This is set at -8 by
% default.
%
% 'DistMat' The distance matrix to use for the alignment
% scoring. Default is BLOSUM50 for 'AA' and NUC44
% for 'NT'
%
% 'NumReps' The number of refining iterations to do.
%
% 'NumTry' The number of tries to perform at each iteration.
%
% 'RefineType' Which type of refinement to perform. This can
% be either 'STOCASTIC', 'DETERMINISTIC' or 'MIXED'.
%
% 'Display' A boolean indicating whether to display the output
% at each iteration.
%
%
RM_FRAC = 0.1;
NUM_TRIES = 10;
NUM_REPS = 100;
alpha = 'aa';
dist_mat = [];
gap_penalty = -8;
TYPE = 'mixed';
disp_flag = true;
for i = 1:2:length(varargin)
switch lower(varargin{i})
case 'alphabet'
if strcmpi('nt', varargin{i+1}) || strcmpi('aa', varargin{i+1})
alpha = varargin{i+1};
else
error('RefineAlignments:BADALPHA', ...
'Arguement to "alphabet" must be "NT" or "AA"')
end
case 'gappenalty'
if isnumeric(varargin{i+1}) && varargin{i+1} < 0
gap_penalty = varargin{i+1};
else
error('RefineAlignments:BADGAP', ...
'Arguement to "GapPenalty" must be negative numeric')
end
case 'distmat'
dist_mat = varargin{i+1};
case 'numreps'
if isnumeric(varargin{i+1}) && varargin{i+1} > 1
NUM_REPS = varargin{i+1};
else
error('RefineAlignments:BADREPS', ...
'Arguement to NumReps must be a positive numeric')
end
case 'refinetype'
TYPE = varargin{i+1};
case 'display'
if islogical(varargin{i+1})
disp_flag = varargin{i+1};
else
error('RefineAlignments:DISPLAY', ...
'Arguement to Display must be a boolean.')
end
otherwise
error('RefineAlignments:BADARG', 'Unknown arguement: %s', ...
lower(varargin{i}))
end
end
if isempty(dist_mat)
if strcmpi(alpha, 'nt')
dist_mat = nuc44;
toint = @nt2int;
else
dist_mat = blosum50;
toint = @aa2int;
end
end
dist_mat(end+1,:) = gap_penalty;
dist_mat(:,end+1) = gap_penalty;
dist_mat(end,end) = 0;
switch upper(TYPE)
case 'MIXED'
is_stoch = true;
is_mix = true;
case 'STOCASTIC'
is_stoch = true;
is_mix = false;
case 'DETERMINISTIC'
is_stoch = false;
is_mix = false;
end
OUT_ALIGN = IN_ALIGN;
cur_score = CalculateScore(OUT_ALIGN, dist_mat, toint);
for i = 1:NUM_REPS
%determine whether to switch based on the "mix" factor
if is_mix
is_stoch = ~is_stoch;
end
rm_rows = GetRows(OUT_ALIGN, is_stoch, RM_FRAC, NUM_TRIES);
counter = 1;
while counter < NUM_TRIES
new_mat = SplitAndReAlign(OUT_ALIGN, rm_rows(:,counter), alpha);
new_score = CalculateScore(new_mat, dist_mat, toint);
if new_score > cur_score
if disp_flag
disp_cell = {'On Iter: ', num2str(i), ' Improved by: ', ...
num2str(abs(new_score-cur_score)), ' and by ', ...
num2str(abs(size(new_mat,2)-size(OUT_ALIGN,2))), ...
' columns', ' Using stoch:', num2str(is_stoch)};
display([disp_cell{:}])
end
cur_score = new_score;
OUT_ALIGN = new_mat;
break
end
counter = counter + 1;
end
end
function rows_mat = GetRows(MAT, STOCH, RM_FRAC, NUM_TRIES)
% GetRows
% A helper function which determines the rows to split the alignment
% with.
%
% MAT A char-array of the multiple alignment.
% STOCH A boolean indicating whether to use a stochastic approach.
% RM_FRAC The fraction of rows to remove.
% NUM_TRIES The number of tries to return.
%
% rows_mat A matrix indicating which rows to remove.
%
if STOCH
rows_mat = rand(size(MAT,1),NUM_TRIES) > RM_FRAC;
if any(all(rows_mat,1)) || any(all(~rows_mat,1))
cols = any(all(rows_mat,1)) || any(all(~rows_mat,1));
rows_mat(1,cols) = ~rows_mat(1,cols);
end
else
gap_mask = MAT =='-';
runs = FindRuns(gap_mask);
score = mode(runs.*(runs~=0))-min(runs);
[~, order] = sort(score, 'descend');
rm_rows = order(1:NUM_TRIES);
[~, norder] = sort(runs(:,rm_rows),'descend');
rows_mat = false(size(MAT,1), NUM_TRIES);
num_remove = ceil(RM_FRAC*size(MAT,1));
for i = 1:NUM_TRIES
rows_mat(norder(1:num_remove,i),i) = true;
end
end
function NEW_MAT = SplitAndReAlign(MAT, ROWS, alpha)
% SplitAndReAlign
% This will split the alignment matix based on the provided rows and
% then create two profiles and re-align them.
%
% MAT A char-array of the alignment.
% ROWS A boolean-array describing the switch between rows
% alpha Either 'NT' or 'AA' to indicate which sequence profile to
% create.
%
% NEW_MAT The ReAlinged alignment
%
mat1 = MAT(ROWS, :);
mat2 = MAT(~ROWS, :);
mat1(:,all(mat1 == '-',1)) = [];
mat2(:,all(mat2 == '-',1)) = [];
pmat1 = seqprofile(mat1, 'alphabet', alpha);
pmat2 = seqprofile(mat2, 'alphabet', alpha);
try
[~, ind1, ind2] = profalign(pmat1, pmat2);
catch
ind1 = 1:size(pmat1,2);
ind2 = 1:size(pmat2,2);
end
NEW_MAT = char(0);
NEW_MAT(ROWS, ind1) = mat1;
NEW_MAT(~ROWS, ind2) = mat2;
NEW_MAT(~isletter(NEW_MAT)) = '-';
NEW_MAT(all(NEW_MAT == '-',1)) = [];
function s = CalculateScore(MAT, DIST, FUN)
% CalculateScore
% A function which calculates the score of the alignment. This score
% is based on the agreement between the consensus and each individual
% alignment.
%
% MAT A char-array of a multiple alignment.
% DIST A distance matrix which indicates the penalty for
% mismatches.
% FUN A function which converts letter to numbers such at nt2int
% or aa2int.
%
% s The score for this alingment.
%
%
cons = seqconsensus(MAT);
num_cons = FUN(cons);
num_align = FUN(MAT);
ncons = repmat(num_cons(:), [size(num_align,1), 1]);
nalign = num_align(:);
lookupinds = sub2ind(size(DIST), ncons, nalign);
s = sum(DIST(lookupinds));
function reverse_looking = FindRuns(input)
% FindRuns
% Finds consecutive runs of 1's along the rows of a boolean array.
%
% INPUT = [1 1 1 0 0 0 1 0 1 0 1 1;
% 0 1 1 1 0 1 1 0 0 1 1 1];
% RL = [1 2 3 0 0 0 1 0 1 0 1 2;
% [0 3 2 1 0 1 2 0 0 1 2 3];
%
[m,n] = size(input);
reverse_looking = [zeros(1,m);input.'];
reverse_looking = reverse_looking(:);
p = find(~reverse_looking);
reverse_looking(p) = [0;1-diff(p)];
reverse_looking = reshape(cumsum(reverse_looking),[],m).';
reverse_looking(:,1) = [];
|